
Ant Technology

Access Android
User Guide

Document Version: 20231226

Ant Technology

Access Android
User Guide

Document Version: 20231226

Legal disclaimer
Ant Group all rights reserved©2022.
No part of this document shall be excerpted, translated, reproduced,
transmitted, or disseminated by any organization, company, or individual in
any form or by any means without the prior written consent of Ant Group.

Trademark statement
and other trademarks related to Ant Group are owned by Ant

Group. The third-party registered trademarks involved in this document are
owned by the right holder according to law.

Disclaimer
The content of this document may be changed due to product version
upgrades, adjustments, or other reasons. Ant Group reserves the right to
modify the content of this document without notice and the updated
versions of this document will be occasionally released through channels
authorized by Ant Group. You must pay attention to the version changes of
this document as they occur and download and obtain the latest version of
this document from Ant Group's authorized channels. Ant Group does not
assume any responsibility for direct or indirect losses caused by improper
use of documents.

Access Android User Guide·Legal disclaimer

> Document Version: 20231226 I

Document conventions
Style Description Example

 Danger
A danger notice indicates a situation
that will cause major system changes,
faults, physical injuries, and other
adverse results.

 Danger:

Resetting will result in the loss of
user configuration data.

 Warning
A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other
adverse results.

 Warning:

Restarting will cause business
interruption. About 10 minutes are
required to restart an instance.

 Notice
A caution notice indicates warning
information, supplementary
instructions, and other content that the
user must understand.

 Notice:

If the weight is set to 0, the server no
longer receives new requests.

 Note
A note indicates supplemental
instructions, best practices, tips, and
other content.

 Note:

You can use Ctrl + A to select all
files.

> Closing angle brackets are used to
indicate a multi-level menu cascade.

Click Settings> Network> Set
network type.

Bold
Bold formatting is used for buttons ,
menus, page names, and other UI
elements.

Click OK.

Courier font Courier font is used for commands Run the cd /d C:/window command to
enter the Windows system folder.

Italic Italic formatting is used for parameters
and variables.

bae log list --instanceid

Instance_ID

[] or [a|b]
This format is used for an optional
value, where only one item can be
selected.

ipconfig [-all|-t]

{} or {a|b}
This format is used for a required
value, where only one item can be
selected.

switch {active|stand}

Access Android User Guide·Document convent
ions

> Document Version: 20231226 I

Table of Contents
1.Add mPaaS to your project

1.1. Prerequisites
1.2. Step 1 select appropriate integration method
1.3. Step 2 create mPaaS application in the console
1.4. Step 3 add configuration files to your project
1.5. Step 4 mPaaS 10.2.3 Support Wireless Bodyguard&Blue Shield Switch (Optional) …
1.6. Step 5 select appropriate baseline
1.7. Step 6 add components to your project

2.Choose integration method
2.1. Integration method introduction
2.2. Native AAR integration method

2.2.1. Manage component dependencies
2.2.2. Check configurations of the build script
2.2.3. Initialize mPaaS
2.2.4. Add obfuscation rules
2.2.5. Upgrade componentized or mPaaS Inside integration mode to Native AAR mode …
2.2.6. Remove specific mPaaS library
2.2.7. Privacy permissions
2.2.8. Use common components of mPaaS framework(optional) …

2.3. Componentized integration method (Portal&Bundle)
2.3.1. About Portal & Bundle projects
2.3.2. General steps
2.3.3. Register common components
2.3.4. Use Material Design
2.3.5. Use non Android support 3rd resource library
2.3.6. Load and customize the framework

07

07

08

08

09

10

14

14

15

15

16

16

17

18

20

23

25

25

27

28

28

38

42

50

56

60

Access Android User Guide·Table of Contents

> Document Version: 20231226 I

2.3.7. Manage gradle dependencies
2.3.8. Obfuscate Android codes
2.3.9. Attention for using MultiDex in mPaaS Portal&Bundle projects …
2.3.10. Data cleansing whitelist
2.3.11. Remove privacy permissions
2.3.12. Use privacy permission pop-ups (Portal&Bundle)

3.Choose baseline
3.1. Baseline introduction
3.2. mPaaS 10.1.68 upgrade guide
3.3. mPaaS 10.1.60 upgrade guide

4.Solve dependency confilction
4.1. Solve dependency conflicts
4.2. Solve conflict with dependency on Amap location
4.3. Solve conflict with dependency on Amap
4.4. Solve conflict with dependency on security guard
4.5. Solve conflict with dependency on utdid
4.6. Solve conflict with dependency on Alipay SDK
4.7. Solve conflict with dependency on wire/okio
4.8. Solve conflict with dependency on fastjson
4.9. Solve conflict with dependency on Android support
4.10. Resolve libc++_shared.so conflicts
4.11. Resolve libstlport_shared.so conflicts
4.12. Solve conflict with libcrashsdk.so
4.13. Solve conflict with libcrashsdk.so

5.Developer's tools
5.1. Android Studio mPaaS plugin

5.1.1. About mPaaS plugin
5.1.2. Install mPaaS plug-in

64
65

69

69

72

73

78

78

79

81

84

84

84

85

86

87

88

89

90

91

92

92

93

94

95

95

95

96

Access Android User Guide·Table of Contents

> Document Version: 20231226 II

5.1.3. Use mPaaS plug-in
5.1.4. Update and uninstall mPaaS plug-in

6.Adapt to Android
6.1. Adapt to Android 12
6.2. Adapt to Android 11
6.3. Adapt to multi-CPU architecture
6.4. Adapt mPaaS to targetSdkVersion 30
6.5. Adapt to targetsdkversion 29
6.6. Adapt to targetsdkversion 28

7.Reference
7.1. Environment configuration under componentized access mode …
7.2. Switch workspace
7.3. DSA certificate encryption tools

8.FAQ

97

101

103

103

104

105

107

109

111

115

115

119

125

128

Access Android User Guide·Table of Contents

> Document Version: 20231226 III

Before you add mPaaS to your project, you need to make the following preparations to satisfy
the access condition.

Install Android Studio
Install the plug-in of Android Studio mPaaS
Register an Alibaba Cloud account
Activate mPaaS
Adapt to different CPU architectures and set targetSdkVersion

Install Android Studio
For the information about downloading Android Studio, see Android Developers.
For how to install Android Studio, see Installation guide.
If you use the earlier version of Android Studio and install the mPaaS plug-in, you need to
upgrade Android Studio to the latest version. Then you can upgrade the mPaaS plug-in to
the latest version. For more details, see Upgrade mPaaS plug-ins.

Install the plug-in of Android Studio mPaaS
When using mPaaS, you need the plug-in of Android Studio mPaaS as the assistance to
manage. See Install mPaaS plug-ins for more information about the plug-in installation.

Register an Alibaba Cloud account
When using mPaaS, you need an Alibaba Cloud to manage the mPaaS console. Thus, you
need to prepare an Alibaba Cloud account. See Sign up with Alibaba Cloud for more
instructions on the registration process.

Activate mPaaS
Log on to the Alibaba Cloud console. On mPaaS page, click Console or Free Beta to enter
Activate products page. Check Terms of Service and click Active Now to activate
mPaaS.

Adapt to different CPU architectures and set targetSdkVersion
mPaaS supports three CPU architectures, armeabi, armeabi-v7a, and arm64-v8a, and also
supports setting targetSdkVersion as 26 (by default), 28, and 29. While accessing mPaaS, you
need to add the following configurations in the build.gradle file under the main Module of
the project, in order to apply the single armeabi CPU architecture and set targetSdkVersion.

1.Add mPaaS to your project
1.1. Prerequisites

Access Android User Guide·Add mPaaS to your
project

> Document Version: 20231226 7

https://developer.android.com/studio
https://developer.android.com/studio/install?#windows
https://www.alibabacloud.com/product/mpaas?spm=a2c63.p38356.6791778070.326.4e266e4cogyMLW

android {
 ···
 defaultConfig {
 ···
 targetSdkVersion 26
 ndk{
 abiFilters 'armeabi'
 }
 ···
 }
 ···
}

If you need to set targetSdkVersion as 28 or 29, please refer to the corresponding document
to finish the configuration.

Adapt to targetsdkversion 28
Adapt to targetsdkversion 29

Note
If you encounter problems with access, please search group number 31591197 with
DingTalk to join the DingTalk group for further communication. The DingTalk group has
added the mPaaS public cloud Q&A assistant, which can quickly answer common access
questions.

mPaaS Android provides the following two integration methods. If you are new to mPaaS, you
can use the recommended native AAR method. This method is closer to the Android
technology stack than the other, so you can get started quickly. For more information about
the access method, see Integration method introduction.

Native AAR integration method
Component-based integration method (Portal&Bundle)

This article describes how to create an mPaaS application in the console. The steps are as
follows:

1. Log on to the mPaaS console.
2. Click Create Application. There is no limit to the number of applications that you can

create in the console. And you can create applications without any cost.
3. Complete the application information.

i. Enter the required application name. The example of the application name: mPaaS Demo.

1.2. Step 1 select appropriate
integration method

1.3. Step 2 create mPaaS
application in the console

Access Android User Guide·Add mPaaS to your
project

> Document Version: 20231226 8

https://account.alibabacloud.com/login/login.htm?oauth_callback=https%253A%252F%252Fmpaaspub.console.aliyun.com%252F

ii. Click + to upload the optional application icon. If you do not upload the icon, a default
icon will be used.
The size of the application icon you can set is less than 1 MB. The dimension is between
50PX to 200PX. And the picture format is JPG or PNG.

4. Click Create to complete creating the application. Jump to the application overview page.

Based on the native AAR method, this document introduces the process of importing
configuration files to the project.

Step 1: Fill in the configuration information, and upload the
signed APK

1. On the application list page, click the application name. For example, click the application
mPaaS Demo created in the previous step. See the following image:

2. On the Application details page, click to open the Configure application
page.

3. On the Configure application page, click to open the Code configuration
page.

4. On the Code configuration page, enter Package Name, namely com.mpaas.demo,
such as com.mpaas.demo. Then upload the compilation, and add the signed APK install
pack. For the information about how to quickly generate the signed APK, see Generate
signed APK.

Step 2: Download configurations to the local system
On the Code configuration page, fill in the information, then click Download
Configuration to get the configuration file of mPaaS.
The configuration file is a compressed package file. This compressed package includes a
 .config file and a yw_1222.jpg encrypted picture.

If you are a public cloud user, you need to ensure the value of base64Code in .config
file is not empty. You can ignore the yw_1222.jpg file, because the public cloud
environment has abandoned this file.
If you are an Apsara Stack user, you do not need to focus on the value of base64Code . See
Generate encrypted pictures (Apsara Stack configuration files). Generate the encrypted
pictures of Apsara Stack manually, then replace the yw_1222.jpg file downloaded from
the console.

Step 3: Add the configuration file to the project
If you are using the component-based access (Portal&Bundle), see The introduction of
componentization access process.

Prerequisites
When you use the native AAR method to access, you need to have a native development
project.

Procedure
1. Open the existing project in Android Studio, click mPaaS > native AAR access .

1.4. Step 3 add configuration files
to your project

Access Android User Guide·Add mPaaS to your
project

> Document Version: 20231226 9

2. In the access pane, click Start import under the importing App configuration.
3. Select I have downloaded the configuration file (Ant-mpaas-xxxx.config) from the

console and am ready to import to the project, then click Next.
4. In the window of Import mPaaS configuration files , select the App Module to be

imported and the configuration file, then click Finish.
5. After the process finishes, you will receive a prompt message that the configuration file has

been imported successfully. Till now, you have completed the process of importing
configuration files manually.

Background information
The matching of wireless bodyguard client SDK and wireless bodyguard pictures is one of the
basic dependency capabilities of mPaaS and is widely used in mPaaS products. In order to
further improve the compatibility of mPaaS products in various scenarios and meet higher
compliance requirements, mPaaS provides Blue Shield capability as an alternative to wireless
bodyguard capability to support scenarios that wireless bodyguards cannot meet.

Current situation
At present, mPaaS has completed the adaptation and testing of supporting wireless
bodyguard switching Blue Shield in the baseline version of Android 10.2.3.23 and above. If
you use the baseline of 10.1.68 or earlier, please upgrade to the latest version of 10.2.3.

Upgrade aseline
Upgrade the baseline version to 10.2.3.23 or later.

Current baseline is 10.1.68 primary baseline
Please refer to mPaaS 10.2.3 Upgrade Guide to upgrade to the latest baseline of 10.2.3 and
make relevant adaptation.

The current baseline is a custom baseline
If you are using a custom baseline, search for the group number 41708565 to join the
DingTalk group or submit a ticket to consult the corresponding after-sales and technical
helpdesk.

Upgrade Toolchain&Switch Blue Shield
Install Android Studio Flamingo | 2022.2.1 and later and mPaaS 3.0.230609 and later.

Remove the wireless bodyguard component
Remove securityguard-build dependency libraries by gradle exclude in the app
module build.gradle .

configurations.all {
 exclude group: 'com.alipay.android.phone.thirdparty', module:
 'securityguard-build'
}

1.5. Step 4 mPaaS 10.2.3 Support
Wireless Bodyguard&Blue Shield
Switch (Optional)

Access Android User Guide·Add mPaaS to your
project

> Document Version: 20231226 10

Add a Blue Shield component
Add the Blue Shield sdk dependency.

implementation "com.mpaas.android:blueshield"// Blue Shield SDK dependencies

Generate a Blue Shield image
Upgrade the dependencies of the easyconfig plug-in:

classpath 'com.android.boost.easyconfig:easyconfig:2.8.0'

Fill in the relevant information as shown in the following figure to generate a Blue Shield
image:

Description of key input items in the preceding figure:
Release Apk : The release apk package packaged by the mPaaS project, you must sign
the package.
MD5: After the release apk package is uploaded, it will be filled in automatically, that is,
the public md5 key of the apk package.
mPaaS config File: Click Download Configuration on the mPaaS console to download
the .config file and import it.
appSecret: View in the mPaaS console, as shown in the following figure.

Access Android User Guide·Add mPaaS to your
project

> Document Version: 20231226 11

Other items appId, packageName, outPath will be automatically identified and filled in
after the above information is passed in.

Finally, add the generated image to the assets directory of the project.

Check whether the Blue Shield image is configured successfully
Drag the apk package to Android Studio to see if there is abs_1222.jpg in the assets
directory of apk. If there is, the Blue Shield picture is successfully configured.

Access Android User Guide·Add mPaaS to your
project

> Document Version: 20231226 12

Configure a switch to Blue Shield
Add meta-data to the AndroidManifest.xml file.

!" -- value description: antGroup is a Blue Shield -->
 <meta-data
 android:name="mpaas_security_mode"
 android:value="antGroup"/>

Note
 mpaas_security_mode are options for the tool used by RPC signing.

List of libraries that support Blue Shield updates
Mobile gateway
Mobile dispatch center
Data synchronization
Multimedia
Mini program
Location Based Service
Unified Storage
Some internal dependent components
Ant Dynamic Card

Scope of test verification

Access Android User Guide·Add mPaaS to your
project

> Document Version: 20231226 13

After the Blue Shield switch is completed, perform a regression test on the app based on the
preceding change list.

Baseline refers to a collection of stable versions for a series of features and is the basis of
further development. While mPaaS is developed on the basis of a specific version of Alipay.
Thus, for mPaaS, baseline is the collection of SDK based on the version. We have provided
multiple versions for the baseline with the continuous upgrading of mPaaS. Till now, mPaaS
has provided four baseline versions, namely, 10.1.68, 10.1.60, and 10.1.32. The maintenance
for 10.1.32 is no longer provided. To ensure abundant features and lower migration cost, you
are recommended to take version 10.1.68 as preference.
For the detailed introduction to the baseline, see Introduction to the baseline.

Procedure
1. Open the existing project in Android Studio, click mPaaS > native AAR access to open

the access pane.
2. Click Start Configuration.
3. In the baseline selection window, select the suitable baseline through the drop-down menu,

then click OK.

This document uses Android Studio mPaaS plug-ins based on the native AAR method. And
the document takes Scan feature as the example to introduce the process of adding mPaaS
component to the project. If you are using the component-based access (Portal&Bundle),
see Componentization access process.

Procedure
1. Click mPaaS > Start Configuration.
2. In the dialogue box, select the target Module, then check Code Scanner.
3. Click OK. The mPaaS plug-in will start to deploy automatically. You can wait for a moment,

and click the plug-in. Then the corresponding Module will add the relevant components.
4. Add successfully.

Till now, the mPaaS component is added to the Module. You can call the operations of this
component in the Module.
mPaaS will add the following content in the build.gradle of the Module you specify:

The information of baseline dependencies
The information of component dependencies

1.6. Step 5 select appropriate
baseline

1.7. Step 6 add components to
your project

Access Android User Guide·Add mPaaS to your
project

> Document Version: 20231226 14

The mobile development platform mPaaS supports the following three integration methods.
This topic describes these three modes and provides recommendations for selecting an
appropriate integration method.

Native AAR integration method
Componentized integration method - Portal & Bundle

Native AAR integration method
Native AAR integration method uses the packaging scheme of native Android AAR. This
scheme allows Android developers to use the technology stack that they are already familiar
with. It is not necessary for developers to learn the packaging knowledge related to mPaaS.
Developers can integrate mPaaS into their projects by using the mPaaS Plugin in Android
Studio or using Maven pom and bom directly. The native AAR integration method allows
developers to use mPaaS more easily with reduced cost. This mode is recommended for
customers who want to start the use of mPaaS quickly and have no demand for component-
based (Portal&Bundle) integration method.

Note
The native AAR mode is supported by 10.1.68 or later versions.

Componentized integration method - Portal & Bundle
The component-based integration means that mPaaS divides an app into one or more Bundle
projects that run independently and one Portal project based on the Open Service Gateway
Initiative (OSGi) technology. mPaaS will manage the lifecycle and dependency of each Bundle
project, and use the Portal project to merge all Bundle project packages into a single
executable .apk package. This method is applicable to concurrent development projects
with large-scale multiplayers.The use of component-based integration requires the using of an
mPaaS gradle packaging tool, which has some requirements on the gradle version and
 com.android.tools.build:gradle version .

How to select an integration method
If mPaaS is expected to be easily accessed and used as other SDKs, we recommend that you
use native AAR integration method.
The concept of large-scale concurrent development is important for you to reconstruct your
project using mPaaS. We recommend that you use componentized integration method.

Comparison of integration methods

Native AAR integration Componentized integration

Source Official Google integration
method Alipay

2.Choose integration method
2.1. Integration method
introduction

Access Android User Guide·Choose integration
method

> Document Version: 20231226 15

Packing speed
Slowest among the three, which
is exactly the same as the
native integrate

The packing speed is fast, and
the packing time is scattered

Project composition App module and library module
Portal (the shell of an App) and
Bundle (various business
components)

Dependent Gradle version Can be upgraded to the latest
official version

4.4/6.3. It cannot be upgraded
by yourself

Dependent AGP toolchain Can be upgraded to the latest
official version

AGP 3.0.1/3.5.x (cannot be
upgraded to other versions by
yourself)

Android Support Library Usable
The version (23) provided by
mPaaS must be used and
cannot be upgraded by
yourself.

Android X Full support Not support

databinding Full support v1

kotlin Full support Recommended not to use

Note
i. Android Gradle Plugin, a gradle plugin for Android packaging.
ii. With android.enableJetifier=true and android.useAndroidX=true .

This topic describes to you the operational flow of component management in native AAR
integration mode.

Prerequisites
You have updated the baseline.

Procedure
1. Click mPaaS > Native AAR Access to open the integration panel. Then click Start

configuration below Configure and update components.

2.2. Native AAR integration
method
2.2.1. Manage component dependencies

Access Android User Guide·Choose integration
method

> Document Version: 20231226 16

2. In the displayed management window, click mPaaS Component Management . Then
select the module and components to be managed and click OK. If your project contains
multiple modules, you can select individual modules and select components for each
module respectively.

3. After the components are added, click OK.

This topic describes how to check configurations of the build script after you add a
component and before you write code.

Procedure
1. Check the configuration of the build.gradle file in the root directory.

i. Check whether the EasyConfig plug-in is imported.

classpath 'com.android.boost.easyconfig:easyconfig:?'

ii. Check whether a baseline version is specified.

ext.mpaas_artifact = "mpaas-baseline"
ext.mpaas_baseline = "10.1.68-41"

2. View the configuration in the App directory to check whether the EasyConfig plug-in is
applied.

apply plugin: 'com.alipay.apollo.baseline.config'

3. Check the version of the Android Gradle plug-in.
Search the project for com.android.tools.build:gradle to view the version of the Android
Gradle plug-in.

If the version of the Android Gradle plug-in is earlier than version 4.0, no special
configuration is required.
If the version of the Android Gradle plug-in is version 4.0 or later, open the
 gradle.properties file and add android.enableResourceOptimizations=false . Then, in
the App project, open the build.gradle file, find the signingConfigs section, and
explicitly add the v1SigningEnabled true line. The following sample code shows the
overall section.

android {
 ...
 signingConfigs {
 release {
 ...
 v1SigningEnabled true
 }
 debug {
 ...
 v1SigningEnabled true
 }
 }
}

If the version of the Android Gradle plug-in is version 7.0 or later, upgrade the EasyConfig
plug-in to version 2.7.5 in the build.gradle file in the root directory.

2.2.2. Check configurations of the build script

Access Android User Guide·Choose integration
method

> Document Version: 20231226 17

classpath 'com.android.boost.easyconfig:easyconfig:2.7.5'

Before you use the mPaaS framework, you need to initialize the Application object based on
whether the Hotpatch feature is enabled. This topic describes the initialization processes in
both cases.

When Hotpatch is disabled
When the Hotpatch feature is disabled, you need only to add the following code to the
Application object.

@Override
public void onCreate() {
 super.onCreate();

 MP.init(
 this,
 MPInitParam.obtain().setCallback(new MPInitParam.MPCallback() {
 @Override
 public void onInit() {
 Log.d("TAG", "mPaaS Init finish");
 }
 })
);
}

Note
1. If you integrate Kotlin, you can use mPaaS Kotlin Extension of mPaaS KTX provided by

mPaaS.
2. If you need to continue to use the QuinoxlessFramework initialization method, your calls

will not be affected in any way, and no changes to the code or business are required.

Important
Please do not filter the process before using the MP.init method. In addition to the main
process, initialization code also needs to be executed in the tools and push child
processes.

When Hotpatch is enabled
When the Hotpatch feature is enabled, perform the following steps.

Procedure
1. In the Application object, re-inherit QuinoxlessApplicationLike and exclude this class

from obfuscation. In the following code, the MyApplication object is used as an example.

 @Keep
 public class MyApplication extends QuinoxlessApplicationLike implements
Application.ActivityLifecycleCallbacks {

2.2.3. Initialize mPaaS

Access Android User Guide·Choose integration
method

> Document Version: 20231226 18

 private static final String TAG = "MyApplication";

 @Override
 protected void attachBaseContext(Context base) {
 super.attachBaseContext(base);

 Log.i(TAG, "attacheBaseContext");

 }

 @Override
 public void onCreate() {
 super.onCreate();
 Log.i(TAG, "onCreate");
 registerActivityLifecycleCallbacks(this);
 }

 @Override
 public void onMPaaSFrameworkInitFinished() {
 LoggerFactory.getTraceLogger().info(TAG, getProcessName());
 }

 @Override
 public void onActivityCreated(Activity activity, Bundle savedInstanceState) {
 Log.i(TAG, "onActivityCreated");
 }

 @Override
 public void onActivityStarted(Activity activity) {

 }

 @Override
 public void onActivityResumed(Activity activity) {

 }

 @Override
 public void onActivityPaused(Activity activity) {

 }

 @Override
 public void onActivityStopped(Activity activity) {

 }

 @Override
 public void onActivitySaveInstanceState(Activity activity, Bundle outState) {

 }

 @Override
 public void onActivityDestroyed(Activity activity) {

Access Android User Guide·Choose integration
method

> Document Version: 20231226 19

 }}

2. In the AndroidManifest.xml file, ensure that the Application object inherits the
 Application object provided by mPaaS. Then, add the generated MyApplication class to
 meta-data whose key is mpaas.quinoxless.extern.application . The following sample
code is for your reference.

 <application
 android:name="com.alipay.mobile.framework.quinoxless.QuinoxlessApplication" >
 <meta-data
 android:name="mpaas.quinoxless.extern.application"
 android:value="com.mpaas.demo.MyApplication"
 />
 </application>

3. Import the Apache HTTP client.
When you use Remote Procedure Call (RPC) or Hotpatch, you need to call the features of
the Apache HTTP client. Therefore, add the following code to the AndroidManifest.xml
file. For more information, see Use the Apache HTTP client.

<uses-library android:name="org.apache.http.legacy" android:required="false"/>

Apps developed on mPaaS Android clients are compiled using Java codes which may easily be
decompiled. Therefore, we need to use Android ProGuard obfuscation files to protect Java
source codes. This topic describes the process to add obfuscation rules in native AAR access
mode.

Procedure
1. Customize yw_1222.jpg as the resource to keep. Create an XML file in your project that

contains the <resources> tag and specify yw_1222.jpg as the resource to keep in the
tools:keep attribute. If desired, each resource to be discarded can also be specified in the
 tools:discard attribute. Both properties accept a comma-separated list of resource
names. The asterisk (*) character can be used as a wildcard.

<?xml version="1.0" encoding="utf-8"?>
<resources xmlns:tools="http://schemas.android.com/tools"
 tools:keep="@drawable/yw_1222"/>

2.2.4. Add obfuscation rules

Access Android User Guide·Choose integration
method

> Document Version: 20231226 20

https://developer.android.com/about/versions/pie/android-9.0-changes-28?hl=zh-cn#apache-p

2. Execute the task to generate an obfuscated file. Click on mPDebugProguardTask (or
mPReleaseProguardTask).

3. After the execution, obfuscation files will be added to the project, as shown in the following
figure.

Access Android User Guide·Choose integration
method

> Document Version: 20231226 21

4. Append the generated obfuscation files to the obfuscation policy.

Note
If transformClassesAndResourcesWithR8ForRelease is frozen during obfuscation, we
recommend that you disable R8 and then perform obfuscation again. To disable R8:
Add android.enableR8=false in gradle.properties .

Access Android User Guide·Choose integration
method

> Document Version: 20231226 22

AAR integration refers to the mode that almost uses native integration. When AAR integration
is used, to meet the need for mPaaS baseline management, you need to use the latest stable
Android Gradle Plugin and Gradle Wrapper versions. Android Gradle Plugin 3.5.3 and Gradle
Wrapper 5.6 or later versions are recommended. Currently, Android Gradle Plugin 3.6.x and
Gradle Wrapper 6.3 are stable.

Preparation
1. Upgrade easyconfig plugin to 2.8.0.
2. Upgrade gradle to 5.0 and above.

Upgrade componentized integration mode to AAR integration
mode
Changes in the plugins

Update Gradle Wrapper and Android Gradle Plugin to the version you need. Gradle's version
should be 5.0 and above.
Remove classpath 'com.alipay.android:android-gradle-plugin' from the build.gradle
file under every program's root directory.
Remove all com.android.application from the bundle projects, and use
 com.android.library from native projects in the bundle projects.
Remove all com.alipay.bundle from the bundle projects.
Remove all definitions of bundle {} and public.xml from bundle projects, unless
special needs.
Remove all com.alipay.portal from the portal projects.

Remove all definitions of portal {} and public.xml from portal projects, unless

2.2.5. Upgrade componentized or mPaaS
Inside integration mode to Native AAR mode

Access Android User Guide·Choose integration
method

> Document Version: 20231226 23

Remove all definitions of portal {} and public.xml from portal projects, unless
special needs.
Update apply plugin: 'com.alipay.apollo.baseline.update' with apply plugin:
'com.alipay.apollo.baseline.config' .

Changes in the dependencies
Remove all the declarations of provided and bundle from dependencies node, and
integrate the AAR dependencies with BOM mode.

 implementation 'com.mpaas.android:push'
 implementation 'com.mpaas.android:nebula'
 implementation 'com.mpaas.android:push-hms5'
 implementation platform("com.mpaas.android:mpaas-baseline:$(latest)")

 testImplementation 'junit:junit:4.12'
 androidTestImplementation 'androidx.test.ext:junit:1.1.1'
 androidTestImplementation 'androidx.test.espresso:espresso-core:3.2.0'

 $(latest) is the latest mPaaS baseline version. If the standard baseline is used, the
value of mpaas-baseline doesn't need update. If the customized baseline is used, the
value of mpaas-baseline should be updated with customized baseline's artifact .
Remove the load and customization of the framework. For more information, please refer to
the document Load and customize the framework.

Changes in the usage of common components
If the components are defined in metainfo.xml mode, please refer to the document Use
common components of mPaaS.

Changes in the files
The files of slinks and res_slinks are not needed.

Possible issues
Because the v1 signature is disabled by default in higher versions, it may cause the wireless
bodyguard to report an error when the v1 signature does not exist. Please refer to How to fix
608 errors at runtime or native errors with libsgmain for the solution.

Self-examination
For self-examination, please refer to the document Check configurations of the build script.

Upgrade inside integration mode to AAR integration mode
Changes in the plugins

Update Gradle Wrapper and Android Gradle Plugin to the version you need. Gradle's version
should be 5.0 and above.
Remove classpath 'com.alipay.android:android-gradle-plugin' from the build.gradle
file under every program's root directory.
Remove all com.alipay.portal from the portal projects.
Remove all definitions of portal {} and public.xml from portal projects, unless
special needs.
Update apply plugin: 'com.alipay.apollo.baseline.update' with apply plugin:
'com.alipay.apollo.baseline.config'.

Access Android User Guide·Choose integration
method

> Document Version: 20231226 24

Changes in the dependencies
Remove all the declarations of provided and bundle from dependencies node, and
integrate the AAR dependencies with BOM mode.

 implementation 'com.mpaas.android:push'
 implementation 'com.mpaas.android:nebula'
 implementation 'com.mpaas.android:push-hms5'
 implementation platform("com.mpaas.android:mpaas-baseline:$(latest)")

 testImplementation 'junit:junit:4.12'
 androidTestImplementation 'androidx.test.ext:junit:1.1.1'
 androidTestImplementation 'androidx.test.espresso:espresso-core:3.2.0'

 $(latest) is the latest mPaaS baseline version. If the standard baseline is used, the value
of mpaas-baseline doesn't need update. If the customized baseline is used, the value of
 mpaas-baseline should be updated with customized baseline's artifact .

Changes in the usage of common components
If the components are defined in metainfo.xml mode, please refer to the document Use
common components of mPaaS.

Changes of gradle.properties
The configuration quinoxless=true is not needed. The existing quinoxless=true can be
either kept or deleted.

Possible issues
Because the v1 signature is disabled by default in higher versions, it may cause the wireless
bodyguard to report an error when the v1 signature does not exist. Please refer to How to fix
608 errors at runtime or native errors with libsgmain for the solution.

Self-examination
For self-examination, please refer to the document Check configurations of the build script.

Integrate in AAR integration mode
1. Add mPaaS SDK to the project.
2. Add components to use in each module.

In build.gradle , the native gradle syntax - exclude is used to remove the specified mPaaS
library. As there may be cases where the same library is referenced by multiple mPaaS
components, we recommend that you apply the removal operation globally. For example,
when you remove the built-in Amap SDK from the mPaaS SDK, refer to the following method:

configurations {
 all*.exclude group:'com.mpaas.group.amap', module: 'amap-build'
 all*.exclude group:'com.alipay.android.phone.thirdparty', module: 'amap3dmap-build'
}

2.2.6. Remove specific mPaaS library

2.2.7. Privacy permissions

Access Android User Guide·Choose integration
method

> Document Version: 20231226 25

The regulatory authority requires that apps not call related sensitive APIs until users click the
Agree button in the privacy agreement pop-up box. For this reason, this requirement is
supported by all versions of mPaaS Android 10.1.68 baseline, 10.1.60.5 or later versions of
10.1.60 baseline, and 10.1.32.16 or later versions of 10.1.32 baseline. Please refer to this
document to modify the project according to the actual situation.

Instructions for Use
You need to enable the Privacy&Security Controls window in the app, and call the API of the
framework to send the Agree broadcast after the user clicks the Agree button. After receiving
the broadcast, the framework is initialized and also records the agree behavior of the user in
the sharedpreference . You will be notified of the completion of the initialization through
callback. You will be unable to use the capabilities of mPaaS components properly until you
receive a callback.

Procedure

Important
The Activity that pops up the privacy dialog box cannot inherit the BaseActivity of mPaaS,
because BaseActivity will collect embedded data, which will cause the App to collect
private data before agreeing to the privacy policy.

1. In meta-data , set the switch for the pop-up dialog box for Privacy & Security Controls. By
default, the switch is off.

 <meta-data
 android:name="privacy_switcher"
 android:value="true"></meta-data>

2. Use the following API to send the Agree broadcast.

Note
The broadcast can be sent only when the user clicks the Agree button.

QuinoxlessPrivacyUtil.sendPrivacyAgreedBroadcast(Context context);

3. Whether the user has agreed the privacy agreement.

Note
When calling this API, please initialize the mPaaS framework first.

QuinoxlessPrivacyUtil.isUserAgreed(Context context);

4. Update the flag indicating the user’s consent to the privacy agreement, allowing you to pop
up this window again in a particular scenario.

 QuinoxlessPrivacyUtil.setUserAgreedState(Context context, boolean agreed);

5. Callback after the framework is initialized:
When QuinoxApplication is used: The capabilities of mPaaS must be used after
 onMPaaSFrameworkInitFinished .

Access Android User Guide·Choose integration
method

> Document Version: 20231226 26

Note
You must use 'QuinoxApplication' if you need to use the hot fix function.

When QuinoxApplication is not used: The capabilities of mPasS must be used after
 onPostInit of IInitCallback .

QuinoxlessFramework.setup(this, new IInitCallback()
{
 @Override
 public void onPostInit()
 {

 }
});

6. If you are using baseline 10.1.68.42 and above and need to clear the privacy state, call
 QuinoxlessPrivacyUtil.clearPrivacyState(context); before all the above calls.

This topic is intended to solve the adaptation problem with the general-purpose components
of the native mPaaS framework when the component-based access mode is changed to the
native AAR access mode. This topic can be ignored if general-purpose components of the
mPassS framework are not used.
For compatibility with component-based access solutions, the following four components can
be used in form of apt on 10.1.60 baseline or later versions:

ActivityApplication (Application)
ExternalService (Service)
BroadcastReceiver
Pipeline

Note
These four components are used in the same way as in component-based access mode.
You can click a component name to view its details.

Use of Components
1. Add related dependencies into library and application projects.

implementation 'com.mpaas.mobile:metainfo-annotations:1.3.4'
The apt access mode of kapt 'com.mpaas.mobile:metainfo-compiler:1.3.4' // kotlin
The apt access mode of annotationProcessor 'com.mpaas.mobile:metainfo-
compiler:1.3.4' // java

2. Append specific annotations respectively when defining the preceding four components.
There are four types of annotations:

@Application

2.2.8. Use common components of mPaaS
framework(optional)

Access Android User Guide·Choose integration
method

> Document Version: 20231226 27

@Service
@BroadcastReceiver
@Pipeline

The parameter in annotation is the same as that defined in metainfo.xml . For example,
when using @Application , you just need to do as follows:

@Application(appId = "123123")
public class MicroApplication extends ActivityApplication {
}

When the library module is not used
If you do not use the library module, APP Module you only need to add it
 @MetaInfoApplication to any class in your project. If you use the easyconfig plug-in in
combination (a common practice), you also need to turn on a switch. See the following
examples:

@MetaInfoApplication(compatibleWithPlugin=true)

When the library module is used
If library module the preceding 4 components are defined in your project, you must
perform the following operations:

1. Declare any class, @MetaInfoLibrary and introduce the packageName of the library
module for the parameter involved. For example:

@MetaInfoLibrary(applicationId=BuildConfig.APPLICATION_ID)

2. Add @MetaInfoApplication to any class in the app module project, and introduce the
 MetaInfoConfig.java generated in library module for dependency. For example:

@MetaInfoApplication(dependencies={com.mylibrary.MetaInfoConfig.class})

If you use the easyconfig plug-in in combination (a common practice), you also need to turn
on a switch. The following shows the example in which an enable switch is integrated:

@MetaInfoApplication(dependencies={com.mylibrary.MetaInfoConfig.class},
compatibleWithPlugin = true)

Obfuscation related
Add related classes into the obfuscation allowlist, especially
 com.alipay.mobile.core.impl.MetaInfoConfig . The following command can be used:

-keep public class com.alipay.mobile.core.impl.MetaInfoConfig

2.3. Componentized integration
method (Portal&Bundle)
2.3.1. About Portal & Bundle projects

Access Android User Guide·Choose integration
method

> Document Version: 20231226 28

The component-based framework refers to the framework in which mPaaS divides an app into
one or more Bundle projects and a Portal project based on Open Service Gateway Initiative
(OSGi) technology. mPaaS manages the life cycle and dependencies of each Bundle project,
and uses the Portal project to merge all Bundle project packages into a runnable .apk
package.
The mPaaS framework is suitable for teams to develop apps collaboratively, and the
framework includes functions such as component initialization and embedding, so that you
can easily access mPaaS components.

Bundle project
A traditional native project consists of a main module or a main module and several sub-
modules. An mPaaS Bundle project generally consists of a main module named app and
several sub-modules.
For example, in Alipay, a Bundle generally consists of a main module named app and the
following three sub-modules:

api: pure code API, the definition of API interface.
biz: the implementation of API interface operation.
ui: such as activity, custom view.

Note
There is at least one sub-module named api. If there is no sub-module, the API package of
the Bundle cannot be packed. And the Bundle cannot be relied on by other Bundles.

After you read this topic, you will learn about the Bundle project from the following aspects:
Difference between Bundle projects and traditional projects
Bundle properties
Bundle interface package
Bundle project package

Difference between Bundle projects and traditional projects
Bundle is essentially a native project. Compared to a native project, a Bundle project has an
additional Apply plug-in of mPaaS in the build.gradle of project, main Module, and
sub-module. The specific differences are described as follows:

 build.gradle in project root directory
 build.gradle of the main module
 build.gradle of the sub-module

build.gradle in project root directory
In build.gradle in the project root directory, the dependency on the mPaaS plug-in is
added:

Note
Due to the iteration of functions, the plug-in version may continue to increase.

classpath 'com.alipay.android:android-gradle-plugin:3.0.0.9.13'

Access Android User Guide·Choose integration
method

> Document Version: 20231226 29

build.gradle of the main module
In build.gradle of the main module, a declaration of mPaaS bundle Apply plug-in is
added. This indicates that the project is a Bundle project. The Bundle configuration is as
follows:

apply plugin: 'com.alipay.bundle'

The following configuration has been added to the main module build.gradle :

Where:
 version : The version of the Bundle
 group : The groupid of the Bundle

Access Android User Guide·Choose integration
method

> Document Version: 20231226 30

 group : The groupid of the Bundle
 exportPackages : Describes which package names all the classes of the current Bundle
project are under. The package names can be a collection. For non-statically linked
Bundles, you must enter exportPackages , otherwise there will be a problem that the class
cannot be loaded. For example, if all the codes are under com.alipay.demo and
 com.alipay.bundle , then you can write com.alipay or com.alipay.demo,
com.alipay.bundle in exportPackages . The package name can neither be too long nor
too short.
 initLevel : The time to load the Bundle when the framework starts. The timing range is
0-100. The smaller the number is, the earlier the loading occurs. Among them, 11110000
means loading during use, that is, lazy loading.
 packageId : Describes the ID of the current Bundle resource, which is needed for aapt
packing. Due to the multi-Bundle architecture, the packageId of each Bundle must be
unique and cannot be the same as the packageId of other Bundles. The packageId currently
used by mPaaS is as follows:

Bundle packageId

com.alipay.android.phone.thirdparty:androidsupp
ortrecyclerview-build 28

com.alipay.android.phone.mobilesdk:framework-
build 30

com.alipay.android.phone.rome:pushservice-build 35

com.alipay.android.phone.sync:syncservice-build 38

com.alipay.android.phone.wallet:nebulabiz-build 41

com.alipay.android.phone.mobilecommon:share-
build 42

com.alipay.android.phone.wallet:nebulacore-build 66

com.alipay.android.mpaas:scan-build 72

com.alipay.android.phone.wallet:nebula-build 76

com.alipay.android.phone.securitycommon:aliupg
rade-build 77

Add the following dependencies on mPaaS in dependencies :

Access Android User Guide·Choose integration
method

> Document Version: 20231226 31

dependencies {
 compile project(":api")
 apt 'com.alipay.android.tools:androidannotations:2.7.1@jar'
 //mPaaS dependencies
 provided 'com.alipay.android.phone.thirdparty:fastjson-api:1.1.73@jar'
 provided 'com.alipay.android.phone.thirdparty:androidsupport-api:13.23@jar'
}

build.gradle of the sub-module
In build.gradle of the sub-module, a declaration of mPaaS Apply plug-in is added. This
indicates that the project is a sub-module project of the Bundle, and the API package of this
Bundle will eventually be packed.

apply plugin: 'com.alipay.library'

Add the following dependencies on mPaaS in dependencies :

dependencies {
 apt 'com.alipay.android.tools:androidannotations:2.7.1@jar'
 //mPaaS dependencies
 provided "com.alipay.android.phone.thirdparty:utdid-api:1.0.3@jar"
 provided "com.alipay.android.phone.mobilesdk:framework-api:2.1.1@jar"
}

Bundle properties
The design concept of the Bundle property in this framework originates from the OSGi
Bundle. But this design is more concise and lighter than the OSGi Bundle.
The following table lists the Bundle properties and descriptions:

Property Description

Bundle-Name
The Bundle name is from the group in the
 build.gradle file and the name
< />defined in settings.gradle .

Bundle-version
Bundle version is from version in the
 build.gradle file.

Init-Level
The time to load the Bundle comes from the
properties: init.level defined in the
 build.gradle file.

Package-Id
The packageid of the Bundle resource comes
from the properties defined in the
 build.gradle file.

Access Android User Guide·Choose integration
method

> Document Version: 20231226 32

Contains-Dex Whether to include dex. This will automatically be
determined by the compiler plug-in.

Contains-Res
Whether to include resources. This will
automatically be determined by the compiler
plug-in.

Native-Library The compiler plug-in can automatically determine
the included so files.

Component-Name

From the
 Activity , Service , BroadcastReceiver
 , and ContentProvider defined in the
 AndroidManifest.xml file.

exportPackages
For the name of the package where all the
classes of this Bundle are located, see the
 build.gradle of the main module .

Bundle interface package
A Bundle may contain multiple sub-modules, such as biz, api, UI. When you compile and
pack the Bundle, each sub-module will generate an interface package in the format of
 .jar . Among these packages, only the API interface packages can be used by other
Bundles.
At the same time, a Bundle project package is also generated during the packing. All sub-
modules are contained in this project package. The project package can be used by the Portal
project. The project package is compiled in the Portal and the .apk package is generated
finally.

The interface package packed by the sub-module of Bundle, only provides customized
java/kotlin interface classes, excludes the resource under res directory. And these interface
packages can only packed from the api modules.
Each Bundle project directly depends on each other through the API package of the Bundle.
You need to configure the dependency API in the dependency in the build.gradle of
the Bundle. For example, Bundle A depends on the bapi sub-module of Bundle B. Then
you need to configure the dependency on bapi in the dependency in the
 build.gradle of the corresponding sub-module of Bundle A.

 provided "com.alipay.android.phone:bundleB:1.0.1:bapi@jar"

The groupId:artifactid:version:classifier involved in the dependency corresponds to
the group, name, version, and sub-module names declared in the Bundle.
By default, the name of Bundle is the folder name of the main module. The Bundle name
can be modified in settings.gradle , as shown in the following code, where app is the
project name of the main module:

 include ':api', ':xxxx-build'
 project(':xxxx-build').projectDir = new File('app')

Access Android User Guide·Choose integration
method

> Document Version: 20231226 33

Bundle project package
The .jar package packed by the whole Bundle project, which is an .apk file but the
suffix is .jar , for example, framework-build.jar .
To rely on Bundle in Portal, you need to declare the dependency on Bundle in dependency
in build.gradle of the main module of Portal, which is shown as follows:

 dependencies {
 bundle "com.alipay.android.phone.mobilesdk:framework-build:version@jar"
 manifest "com.alipay.android.phone.mobilesdk:framework-
build:version:AndroidManifest@xml"
 }

There are two types of Bundle packages: debug package and release package. When Portal
depends on the debug package of Bundle, you need to add :raw to the debug package.

When Portal depends on the debug package of the Bundle, use bundle
"com.alipay.android.phone.mobilesdk:framework-build:version:raw@jar"

When Portal depends on the release package of the Bundle, use bundle
"com.alipay.android.phone.mobilesdk:framework-build:version@jar"

Note
When you pack the Portal package, you need to make sure the following items:

Which Bundles are to be packed in the main dex of the app. Static link. Bundle
with ContentProvider must be placed in a static link.
Which are dynamically loaded. If the app is not big, it is recommended to be
packed in the main dex.

If you want to pack the Bundle code into the main dex, you need to configure the
current Bundle in the slinks file of Portal. The configuration content is: groupId-
artifactId . If the configuration content ends with -build , you need to remove -
build. For example, if the groupId is com.mpaas.group and the artifactId is
 testBundle-build , you need to add a line in the slinks file: com.mpaas.group-
testBundle .
Static link: Pack the Bundle code into classes.dex in apk , or into classes1.dex
or classes2.dex . Then you can load the classes in the Bundle when the project starts.
Dynamic loading: Store the Bundle code in lib/armeabi . When you use a Bundle
class, the framework automatically creates a BundleClassLoader for loading. In this
case, you need to configure exportPackages of the Bundle.

Portal project
The Portal project merges all the Bundle project packages into a runnable .apk package.

Difference between Portal project and traditional project
The difference between Portal and traditional development projects is in build.gradle :

 build.gradle in project root directory

 build.gradle of the main module

build.gradle in project root directory

Access Android User Guide·Choose integration
method

> Document Version: 20231226 34

As shown in the following figure, the class path has an additional
 com.alipay.android:android-gradle-plugin:2.1.3.2.7 plug-in:

Note
Due to the iteration of functions, the plug-in version may continue to increase.

This plug-in contains the Portal plug-in, which can merge the Bundles during the packing
process.

Merge the .jar packages of Bundle
Merge the AndroidManifest file of Bundle

build.gradle of the main module
The declaration of mPaaS Apply Portal plug-in is added, which indicates that the project is
a Portal project. The Portal configuration is as follows:

apply plugin: 'com.alipay.portal'

At the same time, add the corresponding dependency on Bundle in dependencies . The
statements in dependencies are the declarations of Bundle and manifest, which are used to
indicate which Bundles or manifests the Portal depends on:

Access Android User Guide·Choose integration
method

> Document Version: 20231226 35

Important
Usually no code is written under Portal.
The following types of resources, such as style, drawable, and string, used in the
Bundle project must be placed in the Portal project. Otherwise, the resources will not be
found during compilation or runtime:

Resources used in AndroidManifest.xml .
The resources passed to NotificaionManager for use.
Resources used by the getResources().getIdentifier() method.
If there are the preceding three situations in the referenced third-party AAR
package, you also need to decompress AAR and copy the corresponding
resources into the Portal project.

Project dependencies
An app based on the mPaaS framework includes one or more Bundles and a Portal. An
app can have only one Portal project, but there can be multiple Bundle projects.
Through the mPaaS plug-in, the Portal project merges all the Bundle project packages into a
runnable .apk package. After the merge, the plug-in deploys the Bundle project to the
specified library address. The library address is defined in build.gradle in the main
module of Bundle, as shown in the following code:

uploadArchives {
 repositories {
 mavenLocal()
 }
}

The library address is uploaded to the local ~/.m2 library address. You can also add a
custom library address as follows:

Access Android User Guide·Choose integration
method

> Document Version: 20231226 36

mavenDeployer {
 mavenLocal()
 repository(url: "${repository_url}") {
 authentication(userName: 'userName', password: 'userName_pwd')
 }
 snapshotRepository(url: "${repository_url}") {
 authentication(userName: 'userName', password: 'userName_pwd')
 }
}

After the upload is completed, the Bundle is stored in the designated library in the form of
 groupid:artifactid:version:classifier@type . So, if you declare dependency in the
 build.gradle< />of the outermost main module of Portal, you can specify dependencies for
each Bundle, as shown in the following code:

dependencies {
 bundle 'com.alipay.android.phone.mobilesdk:quinox-
build:2.2.1.161221190158:nolog@jar'
 manifest 'com.alipay.android.phone.mobilesdk:quinox-
build:2.2.1.161221190158:AndroidManifest@xml'
}

In addition, the interdependence between Bundle projects also needs to declare the library
dependency address in the outermost build.gradle of the Bundle.

Note
The username and password in the following configuration are not the logon user
name and password of the console. Please search for group number 41708565 with
DingTalk to join DingTalk group to get these two values.

 mavenLocal() describes the dependent local library address.
 maven{} declares the address of the remote library that it depends on.

allprojects {
 repositories {
 mavenLocal()
 mavenCentral()
 maven {
 credentials {
 username "{username}"
 password "{password}"
 }
 url "http://mvn.cloud.alipay.com/nexus/content/repositories/releases/"
 }
 }
}

Bundle compilation and packing results

Access Android User Guide·Choose integration
method

> Document Version: 20231226 37

After you compile and pack the package with the mPaaS plug-in, a Bundle will generate a
project package, which is a .jar package. For more information, see Bundle interface
package and Bundle project package.
The project package will be published to the designated library in the form of
 groupid:artifactid:version:classifier@type . The release library address is defined in
 build.gradle in the Bundle main module as follows:

uploadArchives {
 repositories {
 mavenLocal()
 }
}

The preceding configuration specifies that the release library is a local Maven library
(mavenLocal). If you need to modify the address of the local Maven library (default ~/.m2)
or add a release library, see Configure release library.

Add Bundle dependencies
You can add Bundle dependencies to the Portal, or you can add dependencies to other
Bundles. You only need to:

1. Declare the dependent library address in build.gradle at the outermost layer of Portal or
Bundle. The dependent library needs to correspond to the preceding Bundle release library.
For the configuration method of the dependent library, see Configure dependent library.

2. Declare dependencies in build.gradle of Portal or the main module of Bundle. An
example of adding Bundle (quinox) dependency is as follows:

 dependencies {
 bundle 'com.alipay.android.phone.mobilesdk:quinox-
build:2.2.1.161221190158:nolog@jar'
 manifest 'com.alipay.android.phone.mobilesdk:quinox-
build:2.2.1.161221190158:AndroidManifest@xml'
 }

Related topics
mPaaS plug-in
Configure dependent library
Configure release library

If component-based integration method is used, you need to complete the following
general steps to complete the integration process:

1. Configure a development environment
2. Create an app in the console
3. Create a new project on the client
4. Manage component dependency
5. Build

Create a new project on the client

2.3.2. General steps

Access Android User Guide·Choose integration
method

> Document Version: 20231226 38

This topic describes how to create a local app, compile and package the app, and then obtain
an executable .apk package in Windows-based development environments.
First, you need to:

1. Configure a development environment
2. Create an app in the console

Create a Portal project
The component-based integration is available where necessary, where you need to create a
Portal project first.
Portal typically contains no business code and is only used to combine Bundles into a single
executable .apk package. Therefore, when you create a Portal project, a Bundle project
suffixed with Launcher is created by default.
The creation procedure is as follows:

1. After launching Android Studio, click Start a new mPaaS project on the welcome page.
2. In the Create New mPaaS Project window, select mPaaS Portal. Click Next.
3. Enter the Project name. When selecting the Configuration file path , select the .config

file downloaded from Manage codes > Code configuration in the console. The mPaaS
plug-in will automatically parse and enter the Package Name based on the selected
configuration file. Click Next.

4. Select an mPaaS SDK version, and check your desired module dependency. Click the Next
button.

Important
Please check module dependency as required. For more information about
dependencies, refer to the document of each component.
You can select only the required dependency for the framework. After creating an
app, use the mPaaS Plug-in > Component Management function to add your desired
dependency.

5. Confirm the information about the Bundle project created by default. Click the Finish
button.

Now, you have created the Portal project and obtained a Bundle project created by default.

Create a Bundle project
The mPaaS framework supports multiple Bundle projects, allowing you to create multiple
Bundle projects for your project.

1. Click the File > New > Start a New mPaaS Project menu.
2. In the Create New mPaaS Project window, select mPaaS Portal. Click Next.
3. Enter the Project name. When selecting the Configuration file path , select the .config

file downloaded from Manage codes > Code configuration in the console. The mPaaS
plug-in will automatically parse and enter the Package Name based on the selected
configuration file. Click Next.

4. Select an mPaaS SDK version, and check your desired module dependency. Click the Next
button.

5. Confirm the information about the Bundle project created by default. Click the Finish
button.

Now, you have created a Bundle project. For more information about Bundle development,
see Bundle Project.

Access Android User Guide·Choose integration
method

> Document Version: 20231226 39

Follow-up steps
To integrate and use mPaaS Components, refer to the integration document of each
component.

Related topics
Component-based integration > Introduction: Describes the code structure and
compilation and package results of Portal and Bundle projects , and their
differences from native projects.

Manage component dependency
To make it easier to upgrade the mPaaS SDK baseline and manage component dependencies,
you need to upgrade the Android Studio mPaaS plug-in to the latest version first. For more
information about how to upgrade the mPaaS plug-in, see Upgrade the mPaaS plug-in.

Manage component dependency
To use an mPaaS component, you need to add the dependency of this component in the
Portal and Bundle projects respectively first.

Adding the dependency in a Portal project will ensure that this dependency is packaged
and included into your apk.
Adding the dependency in a Bundle project will ensure that you can call the API of this
component in the Bundle project.
For a single Portal project, you only need to add the dependency in this Portal project.
If you have already selected the components you want to use when creating your mPaaS
project, you can still add and remove components as follows.

Procedure
1. In Android Studio, select mPaaS > Component-based Access, and in the integration

panel that appears, click Start Configuration under Configure/Update Components.
2. In the component management window that appears, click the corresponding buttons to

install your desired components.
If a component is not installed, the corresponding button displays “Uninstalled”. Click this
button to install the component.
If a component is installed, the corresponding button displays “Installed”. In this case,
click on this button again will uninstall this component.

Follow-up steps
If you have not used the Android Studio mPaaS plug-in to manage component dependencies
before, and this is your first time using the Component Management feature, after adding
components, you also need to check or modify the following configurations.

1. Check the build.gradle file in the root directory of the Portal and Bundle projects. Make
sure that the file contains the following dependencies and the version is not earlier than the
following versions:

 buildscript {
 ...
 dependencies {
 classpath 'com.android.boost.easyconfig:easyconfig:2.8.0'
 }
 }

2. Check the build.gradle file in the main module of the Portal project. Make sure that the
file contains the following contents:

Access Android User Guide·Choose integration
method

> Document Version: 20231226 40

 apply plugin: 'com.alipay.portal'
 portal {
 allSlinks true
 mergeAssets true
 }
 apply plugin: 'com.alipay.apollo.baseline.update'
 mpaascomponents{
 excludeDependencies=[]
 }

3. Delete old dependencies:

Important
It is highly recommended that you make a backup of the followings before deleting
them.

For the Portal + Bundle mode, you need to delete the dependencies (except mpaas-
baseresjar) of the mPaaS components at the dependencies node in the build.gradle
file under the main module of the Portal project.
For a single Portal project, you need to delete the followings from the build.gradle file
under the main module:

apply from: rootProject.getRootDir().getAbsolutePath() + "/mpaas_bundles.gradle"
apply from: rootProject.getRootDir().getAbsolutePath() + "/mpaas_apis.gradle"

and delete the mpaas_bundles.gradle and mpaas_apis.gradle files in the root
directory of the project. Note that deleting the mpaas_apis.gradle file may lead to the
compilation failure. You need to change configurations in the sub-module as described in
the following section.

4. To call the API of the mPaaS component from the sub-module:
For a Portal + Bundle project, you need to add the following into the build.gradle file
under the sub-module of a Bundle project:

apply plugin: 'com.alipay.apollo.baseline.update'

For a single Portal project, you need to delete the following from the build.gradle file
under the sub-module:

apply from: rootProject.getRootDir().getAbsolutePath() + "/mpaas_apis.gradle"

and add the following:

apply plugin: 'com.alipay.apollo.baseline.update'

5. If the original dependencies include your custom dependencies, you need to Add Custom
Dependencies.

6. If compilation failed due to library conflicts, you can Solve Dependency Conflicts.

Upgrade the baseline
1. In Android Studio, click mPaaS > Component-based Access, and in the integration panel

that appears, click Start Configuration under Access/Upgrade Baseline.

Access Android User Guide·Choose integration
method

> Document Version: 20231226 41

2. Click the version dropdown box, select a new version, and then click the OK button to
upgrade the baseline.

Upgrade a single component
New version

1. In Android Studio, select mPaaS > Component Upgrade to show the list of components.
2. View component status and upgrade components. If there is an update available in the

upper right corner, then click and update it.

Old version
1. In Android Studio, select mPaaS > Component Upgrade to show the list of components.
2. View component status and upgrade components:

If the latest version is currently being used, then no upgrade is required for this
component.
Otherwise, a later version is available for this component. Click the status button to
upgrade this component.

Add Custom Dependencies
If it is your first time to use the Component Management feature to manage
components, but not to upgrade the SDK, then you only need to write the custom
dependencies into the dependencies node in the build.gradle file under the main
module of a Portal project. For example:

bundle 'com.alipay.android.phone.mobilesdk:logging-build:2.0.2.180322162837@jar'
manifest 'com.alipay.android.phone.mobilesdk:logging-
build:2.0.2.180322162837:AndroidManifest@xml'

If it is your first time to use the Component Management feature to manage components
and upgrade the SDK, or use the Baseline Upgrade feature to upgrade the SDK, your
custom dependencies may need to be re-customized based on the new version. You need
to submit a ticket or contact your mPaaS support for confirmation. After re-customization or
confirmation that re-customization is not required, you can add custom dependencies as
described above.

Build
Use the Build feature provided by the Android Studio mPaaS plug-in to compile a project.

A modular design method is one of the design principles of mPaaS framework. The low
coupling and high cohesion of business modules are conducive to the expansion and
maintenance of businesses.
Business modules exist in the form of Bundles and the modules do not affect each other. But
there are some correlations between Bundles, such as jumping to another Bundle interface,
calling APIs in another Bundle, or performing some operations in Bundle to be completed
during initialization.
For this reason, mPaaS is designed with the metainfo general-purpose component
registration mechanism, where each Bundle declares the components that need to be
registered in metaInfo.xml .
The frameworks currently supports the following components:

ActivityApplication (Application)

2.3.3. Register common components

Access Android User Guide·Choose integration
method

> Document Version: 20231226 42

https://workorder-intl.console.aliyun.com/console.htm?spm=a2c63.p38356.9135018350.28.301e6e4cwi0Njo&lang=#/ticket/createIndex

ExternalService (Service)
BroadcastReceiver
Pipeline

The format of metainfo.xml is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<metainfo>
 <broadcastReceiver>
 <className>com.mpaas.demo.broadcastreceiver.TestBroadcastReceiver</className>
 <action>com.mpaas.demo.broadcastreceiver.ACTION_TEST</action>
 </broadcastReceiver>
 <application>
 <className>com.mpaas.demo.activityapplication.MicroAppEntry</className>
 <appId>33330007</appId>
 </application>
</metainfo>

Application component
ActivityApplication is a component designed by the mPaaS framework and acts as an activity
container. The ActivityApplication component allows you to manage and organize activities,
specifically for solving the issue of jumping to another Bundle interface. Thus, the caller
needs only to care about the ActivityApplication information registered in the framework on
the business side and the agreed parameters.

About this task
A series of logic such as creation and destruction of ActivityApplication is completely
managed by the mPaaS framework. The business side only needs to process the parameters
it receives and manage the activities under its own business, so that the business side is
effectively isolated from the caller. The business side and the caller only need to coordinate
the invoked parameters, which reduces the dependency.
For Android native apps developed based on the mPaaS framework, activities must be
inherited from BaseActivity or BaseFragmentActivity in order to be managed by the
ActivityApplication class.

Procedure
1. Create a metainfo.xml file in the main module of your project, and place it in the location

as shown in the following figure:

Access Android User Guide·Choose integration
method

> Document Version: 20231226 43

2. Write the following configurations into the metainfo.xml file, wherein:
 className The configured class name is used to provide the class name to jump to and
define the behavior of each stages. For class definitions, see codes in step three. The
framework loads the corresponding class through the name defined by className .
Therefore, the class must not be obfuscated and needs to be retained in the obfuscation
file.
 appId : Unique identifier of a business. The business side only needs to know the appId
of the business to complete the jump. The mapping between appId and
ActivityApplication is handled by the framework layer.

<?xml version="1.0" encoding="UTF-8"?>
<metainfo>
 <application>
 <className>com.mpaas.demo.hotpatch.HotpatchMicroApp</className>
 <appId>33330002</appId>
 </application>
</metainfo>

3. If the class specified by metainfo via className performs only simple jumps, the
following code is used for implementation:

 /**
 * Scenario one:
 * If you can only jump to a certain activity interface, then you need to reload get
EntryClassName and onRestart. For getEntryClassName, classname of the activity is ret
urned, and for onRestart, getMicroApplicationContext().startActivity(this, getEntryCl
assName()) must be invoked;
 * Scenario two:
 * To jump to a different activity interface on demand, you need to reload onStart a
nd onRestart, and jump to the specified interface based on the parameters in the Bund
le project.
 * Created by mengfei on 2018/7/23.
 */
 public class MicroAppEntry extends ActivityApplication {

 @Override
 public String getEntryClassName() {
 //Scenario one: It is only possible to jump to a certain activity screen. In
this case, classname is returned
 //Scenario two: Jumps to a certain interface according to parameters. The nu
ll result must be returned.
 return MainActivity.class.getName();
 }

 /**
 * Invoked during application creation; the implementation class can perform ini
tialization here
 *
 * @param bundle
 */
 @Override
 protected void onCreate(Bundle bundle) {
 doStartApp(bundle);
 }

Access Android User Guide·Choose integration
method

> Document Version: 20231226 44

 /**
 * Invoked during application startup
 * If the application is not created yet, the create will be executed first, and
then the onStart() callback
 */
 @Override
 protected void onStart() {
 }

 /**
 * When an application is destroyed, this callback function is invoked
 *
 * @param bundle
 */
 @Override
 protected void onDestroy(Bundle bundle) {

 }

 /**
 * During the application startup, if the application has been started, the onRe
start() callback will be invoked instead of the onStart()
 *
 * @param bundle
 */
 @Override
 protected void onRestart(Bundle bundle) {
 //For scenario one: The getMicroApplicationContext().startActivity(this, getEntr
yClassName()) must be invoked here;
 doStartApp(bundle);
 }

 /**
 * When a new application is started, the current application will be paused, an
d the method is called back
 */
 @Override
 protected void onStop() {

 }

 private void doStartApp(Bundle bundle) {
 String dest = bundle.getString("dest");
 if ("main".equals(dest)) {
 Context ctx =
LauncherApplicationAgent.getInstance().getApplicationContext();
 ctx.startActivity(new Intent(ctx, MainActivity.class));
 } else if ("second".equals(dest)) {
 Context ctx =
LauncherApplicationAgent.getInstance().getApplicationContext();
 ctx.startActivity(new Intent(ctx, SecondActivity.class));
 }
 }

Access Android User Guide·Choose integration
method

> Document Version: 20231226 45

 }

4. As the caller, you need to jump through the API provided in the MicroApplicationContext
encapsulated by the framework. curId or specify null for the parameter:

 // Gets the MicroApplicationContext object:
 MicroApplicationContext context = MPFramework.getMicroApplicationContext();
 String curId = "";
 ActivityApplication curApp = context.getTopApplication();
 if (null != curApp) {
 curId = curApp.getAppId();
 }
 String appId = "ID of destination ApplicationActivity";
 Bundle bundle = new Bundle(); // Additional parameter. This parameter is not mandato
ry for passing.
 context.startApp(curId, appId, bundle);

Service component
mPaaS is designed with a service component to address the issue with invoking APIs across
Bundles. The service component will be used to provide some logic as a service for being
used by other modules.

About this task
The service component has the following features:

There is no constraint to UI.
The API is separated from implementation in design.

In principle, only the API classes are visible to callers. Therefore, the API classes must be
defined in the API module. The implementation must be defined in the main module. Note
that by default, an API module named api is generated when building a Bundle project.
External invocations are made through the findServiceByInterface API of
 MicroApplicationContext to get the corresponding service through interfaceName . For
the use of Bundle, only the service abstract API classes, i.e. those defined in interfaceName,
are exposed. Abstract API classes are defined in the API package.

Procedure
Register the service component in the following steps:

1. Define the location of metainfo.xml , as shown in the following figure:

Access Android User Guide·Choose integration
method

> Document Version: 20231226 46

2. Write the following configurations into the metainfo.xml file. The framework uses
 interfaceName as key , and className as value , and records the mapping
relationship between them. Of them, className is the implementation class of an API,
and interfaceName is the abstract API class:

<metainfo>
 <service>
 <className>com.mpaas.cq.bundleb.MyServiceImpl</className>
 <interfaceName>com.mpaas.cq.bundleb.api.MyService</interfaceName>
 <isLazy>true</isLazy>
 </service>
</metainfo>

An abstract API class is defined as follows:

public abstract class MyService extends ExternalService {
public abstract String funA();
}

An API class implementation is defined as follows:

public class MyServiceImpl extends MyService {
 @Override
 public String funA() {
 return "This is the API by service which is provided by BundleB";
 }

 @Override
 protected void onCreate(Bundle bundle) {

 }

 @Override
 protected void onDestroy(Bundle bundle) {

 }
}

An external invocation method is defined as follows:

MyService myservice =
LauncherApplicationAgent.getInstance().getMicroApplicationContext().findServiceByInterf
ace(MyService.class.getName());
myservice.funA();

BroadcastReceiver component
BroadcastReceiver is the encapsulation of android.content.BroadcastReceiver , but the
difference is that the mPaaS framework uses
 android.support.v4.content.LocalBroadcastManager to register and unregister
BroadcastReciever. Therefore, these broadcasts are only used internally within the current
application, and in addition, the mPaaS framework is built with a series of broadcast events
for being monitored by users.

mPaaS built-in broadcast events

Access Android User Guide·Choose integration
method

> Document Version: 20231226 47

mPaaS defines multiple broadcast events that are primarily used to monitor the states of the
current application. The registration of a listener is no different from that in a native
development environment. But note that these states can only be monitored by the host
process. The sample code is as follows:

The built-in broadcast events are as follows:

public interface MsgCodeConstants {
 String FRAMEWORK_ACTIVITY_CREATE = "com.alipay.mobile.framework.ACTIVITY_CREATE";
 String FRAMEWORK_ACTIVITY_RESUME = "com.alipay.mobile.framework.ACTIVITY_RESUME";
 String FRAMEWORK_ACTIVITY_PAUSE = "com.alipay.mobile.framework.ACTIVITY_PAUSE";
 //Broadcast indicating that a user logs off, switch-to-backend broadcast
 String FRAMEWORK_ACTIVITY_USERLEAVEHINT =
"com.alipay.mobile.framework.USERLEAVEHINT";
 //Broadcast indicating that all activities stop. This may be the switch-to-backend
broadcast, but no the same judgment logic applies now
 String FRAMEWORK_ACTIVITY_ALL_STOPPED =
"com.alipay.mobile.framework.ACTIVITY_ALL_STOPPED";
 String FRAMEWORK_WINDOW_FOCUS_CHANGED =
"com.alipay.mobile.framework.WINDOW_FOCUS_CHANGED";
 String FRAMEWORK_ACTIVITY_DESTROY = "com.alipay.mobile.framework.ACTIVITY_DESTROY";
 String FRAMEWORK_ACTIVITY_START = "com.alipay.mobile.framework.ACTIVITY_START";
 String FRAMEWORK_ACTIVITY_DATA = "com.alipay.mobile.framework.ACTIVITY_DATA";
 String FRAMEWORK_APP_DATA = "com.alipay.mobile.framework.APP_DATA";
 String FRAMEWORK_IS_TINY_APP = "com.alipay.mobile.framework.IS_TINY_APP";
 String FRAMEWORK_IS_RN_APP = "com.alipay.mobile.framework.IS_RN_APP";
 //Broadcast indicating that a user returns to the front-end
 String FRAMEWORK_BROUGHT_TO_FOREGROUND =
"com.alipay.mobile.framework.BROUGHT_TO_FOREGROUND";
}

Customize broadcast events
1. Define the location of metainfo.xml , as shown in the following figure:

Access Android User Guide·Choose integration
method

> Document Version: 20231226 48

2. Write the following configurations into the metainfo.xml file:

 <?xml version="1.0" encoding="UTF-8"?>
 <metainfo>
 <broadcastReceiver>

<className>com.mpaas.demo.broadcastreceiver.TestBroadcastReceiver</className>
 <action>com.mpaas.demo.broadcastreceiver.ACTION_TEST</action>
 </broadcastReceiver>
 </metainfo>

Customize Receiver implementation

public class TestBroadcastReceiver extends BroadcastReceiver {
 private static final String ACTION_TEST =
"com.mpaas.demo.broadcastreceiver.ACTION_TEST";

 @Override
 public void onReceive(Context context, Intent intent) {
 String action = intent.getAction();
 if (ACTION_TEST.equals(action)) {
 //TODO
 }
 }
}

Send broadcast

LocalBroadcastManager.getInstance(LauncherApplicationAgent.getInstance().getApplication
Context()).sendBroadcast(new
Intent("com.mpaas.demo.broadcastreceiver.ACTION_TEST"));

Pipeline component
The mPaaS framework has an obvious startup process. The pipeline mechanism allows the
business line to encapsulate its own run logic into runnable and then place it in the pipeline.
The framework starts an appropriate pipeline at an appropriate stage.
The following defines the pipeline timing:

 com.alipay.mobile.framework.INITED : The framework is initialized. The framework can

Access Android User Guide·Choose integration
method

> Document Version: 20231226 49

 com.alipay.mobile.framework.INITED : The framework is initialized. The framework can
also be initialized when the process starts in the background.
 com.alipay.mobile.client.STARTED : The client starts initialization. You have to wait until a
page appears, for example, the welcome page.
 com.alipay.mobile.TASK_SCHEDULE_SERVICE_IDLE_TASK : Lowest priority. This is executed
only when there are no other operations with higher priority

As the Pipeline invocation is triggered by the framework, the user only needs to specify the
appropriate timing in metaInfo .

Procedure
1. Define the location of metainfo.xml , as shown in the following figure:

2. Write the following configurations into the metainfo.xml file:

 <?xml version="1.0" encoding="UTF-8"?>
 <metainfo>
 <valve>
 <className>com.mpaas.demo.pipeline.TestPipeLine</className>
 <!--pipelineName is used to specify the stage at which execution occurs-->
 <pipelineName>com.alipay.mobile.client.STARTED</pipelineName>
 <threadName>com.mpaas.demo.pipeline.TestPipeLine</threadName>
 <!--weight is used to specify the priority of an operation. The lower the va
lue is, the higher the execution priority is-->
 <weight>10</weight>
 </valve>
 </metainfo>

3. To implement the pipeline:

 public class TestPipeLine implements Runnable {
 @Override
 public void run() {
 //...
 }
 }

2.3.4. Use Material Design

Access Android User Guide·Choose integration
method

> Document Version: 20231226 50

This topic introduces how to use Material Design from aspects of project configuration and
resource usage.

Configure a project
About this task
Due to the special nature of the mPaaS framework, if an AppCompat related library is directly
imported into your project, there will be a compilation error indicating that resources cannot
be found. To solve this problem, the mPaaS provides a custom AppCompat library. To use the
customized AppCompat library by the mPaaS, configure the Portal and Bundle projects.
The mPaaS AppCompat library is developed based on the native Android version 23 and
includes the following components:

appcompat
animated-vector-drawable
cardview
design
recyclerview
support-vector-drawable

Compiled based on the native Android version 23, this custom AppCompat library is the same
as the native library. But this solution can solve a number of compilation issues associated if
you use the native library.
Use of resources mainly includes using resources in another Bundle , making resources
available for external devices, and using custom resources in AndroidManifest . Due
to the special nature of the mPaaS framework, you need to understand the considerations
when different resources are used. For more information, refer to Use resources.

Procedure
1. Configure a Portal project.

Before invoking the mPaaS AppCompat, perform the following operations to configure a
Portal project:
i. Run the following command to replace the Gradle package plug-in (Alipay Plugin for

Gradle) version with the following version:

classpath 'com.alipay.android:android-gradle-plugin: 3.0.0.9.13'

ii. Remove the AppCompat library that previously depends on from the Gradle script.
iii. Add the following AppCompat dependencies to the Gradle script:

bundle 'com.mpaas.android.res.base:mpaas-baseresjar:1.0.0.180626203034@jar'
manifest 'com.mpaas.android.res.base:mpaas-
baseresjar:1.0.0.180626203034:AndroidManifest@xml'

iv. After completing the configuration, make the Bundle project invoke the AppCompat
component to synchronize the Portal project.

2. Configure a Bundle project
i. In a Bundle project that uses the AppCompat component, change the Gradle package

plug-in (Alipay Plugin for Gradle) to the following version:

classpath 'com.alipay.android:android-gradle-plugin: 3.0.0.9.13'

Access Android User Guide·Choose integration
method

> Document Version: 20231226 51

ii. Select the sub-component to depend on according to the component you use. The
following shows the sample statement to add recyclerview :

provided 'com.mpaas.android.res.base:mpaas-
baseresjar:1.0.0.180626203034:recyclerview@jar'

Use resources
Common resources for material design include strings, colors and styles. Scenarios where
resources are used include:

Check whether Package ID is duplicate
Use the resource in another Bundle
Provide resources for external devices
Use custom resources in AndroidManifest

Check whether Package ID is duplicate
If the resource cannot be found while you use it as described in this topic, you need to check
to check whether the Package ID is duplicate. Package ID is defined in build.gradle and
the value of this ID is related to the ID of the resulting resource. Resources cannot be found
when Package ID is duplicate.
You can check whether Package ID is duplicate by using the following two methods:

Method 1: Perform auto detection by running Gradle task
Prerequisites
 The version of android-gradle-plugin is 3.0.0.9.13 or later versions. e.g.

classpath 'com.alipay.android:android-gradle-plugin: 3.0.0.9.13'

Test procedure
1. Execute the following commands under the root directory of a Portal project:

For the Windows operating system: Executes gradlew.bat checkBundleIds .
For other operating systems: Executes gradlew checkBundleIds .

2. Test result:
If the test result indicates No duplicate bundle ids found , Package ID is not duplicate.

If the test result indicates There are duplicate bundle ids , Package ID is duplicate.
You can further determine which Package IDs are duplicate based on the test result.

Method 2: Perform test mannually
Manual test applies in any case. The test procedure is as follows:

1. In the following location of a Portal project, open the bundles.csv plain text file.

Access Android User Guide·Choose integration
method

> Document Version: 20231226 52

2. Sort the PackageId column, and check whether Package ID is duplicate. Make sure there
are no duplicate Package IDs before recompilation.

Use the resource in another Bundle
Typical scenario
This is the case with using the resource in mpaas-baseresjar . When using the resource in
another Bundle, you must append the namespace of the resource. The namespace is the
applicationID of the Bundle in which the resource resides. An error may occur when you build
a release package, as shown in the following figure:

Solution
In build.gradle , configure lintOptions , as shown in the following figure:

Access Android User Guide·Choose integration
method

> Document Version: 20231226 53

You must prefix resources with a namespace whenever references are made to resources in
this Bundle (in layouts, in custom styles). Otherwise, a compilation error indicating that
resources cannot be found will occur.

Sample code: references in layouts
Taking the reference to a resource in another Bundle in layouts as an example, check the
following sample code:

<?xml version="1.0" encoding="utf-8"?>
<android.support.design.widget.CoordinatorLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res/com.mpaas.android.res.base"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:fitsSystemWindows="true">

 <android.support.design.widget.AppBarLayout
 android:id="@+id/app_bar_scrolling"
 android:layout_width="match_parent"
 android:layout_height="@dimen/app_bar_height_image_view"
 android:fitsSystemWindows="true"
 android:theme="@style/AppTheme.AppBarOverlay"
 android:background="@color/blue">

 <android.support.design.widget.CollapsingToolbarLayout
 android:id="@+id/collapsing_toolbar_layout"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:fitsSystemWindows="true"
 app:contentScrim="?com.mpaas.android.res.base:attr/colorPrimary"
 app:layout_scrollFlags="scroll|exitUntilCollapsed">

 <ImageView
 android:id="@+id/image_scrolling_top"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:fitsSystemWindows="true"
 android:scaleType="fitXY"
 android:src="@drawable/material_design_3"
 app:layout_collapseMode="parallax" />

 <android.support.v7.widget.Toolbar
 android:id="@+id/toolbar"
 android:layout_width="match_parent"
 android:layout_height="?com.mpaas.android.res.base:attr/actionBarSize"
 app:layout_collapseMode="pin"
 app:popupTheme="@style/AppTheme.PopupOverlay" />

 </android.support.design.widget.CollapsingToolbarLayout>
 </android.support.design.widget.AppBarLayout>

 <android.support.design.widget.FloatingActionButton
 android:id="@+id/fab_scrolling"
 android:layout_width="wrap_content"

Access Android User Guide·Choose integration
method

> Document Version: 20231226 54

 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_margin="@dimen/big_activity_fab_margin"
 android:src="@drawable/ic_share_white_24dp"
 app:layout_anchor="@id/app_bar_scrolling"
 app:layout_anchorGravity="bottom|end" />

 <include layout="@layout/content_scrolling" />

</android.support.design.widget.CoordinatorLayout>

Sample code: references in custom styles
When you use the resource in another Bundle in the custom style, the code sample is shown
as follows:

<style name="AppTheme"
parent="@com.mpaas.android.res.base:style/Theme.AppCompat.NoActionBar">
 <!-- Customize your theme here. -->
 <item name="com.mpaas.android.res.base:colorPrimary">@color/colorPrimary</item>
 <item
name="com.mpaas.android.res.base:colorPrimaryDark">@color/colorPrimaryDark</item>
 <item name="com.mpaas.android.res.base:colorAccent">@color/colorAccent</item>
 </style>

Provide resources for external devices
1. Configure a Portal project. Import the information about the resource Bundle into

 Portal :

// Import the resource Bundle
bundle "com.mpaas.demo.materialdesign:materialdesign-build:1.0-SNAPSHOT:raw@jar"
manifest "com.mpaas.demo.materialdesign:materialdesign-build:1.0-
SNAPSHOT:AndroidManifest@xml"
// To find resources when compiling, you need the JAR package of this Bundle.
provided 'com.mpaas.demo.materialdesign:materialdesign-build:1.0-SNAPSHOT:raw@jar'

2. Define resources. Complete the following steps to define a resource so that the resource
can be referenced by another Bundle or Portal:

i. Define the resource ID that need to be supplied to an external device in public.xml for

Access Android User Guide·Choose integration
method

> Document Version: 20231226 55

i. Define the resource ID that need to be supplied to an external device in public.xml for
the purpose of fixing the resource ID. This capability is provided by Android. The resource
ID value can be copied from R.java . The code sample is shown as follows:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <public name="AppTheme" id="0x1f030000" type="style" />
 <public name="AppTheme.AppBarOverlay" id="0x1f030001" type="style" />
 <public name="AppTheme.NoActionBar" id="0x1f030002" type="style" />
 <public name="AppTheme.NoActionBar.StatusBar" id="0x1f030003" type="style" />
 <public name="AppTheme.PopupOverlay" id="0x1f030004" type="style" />
 <public name="DialogFullscreen" id="0x1f030005" type="style" />
 <public name="DialogFullscreenWithTitle" id="0x1f030006" type="style" />

 <public name="title_activity_login" id="0x1f0c0081" type="string"/>
 <public name="title_activity_recycler_view" id="0x1f0c0082" type="string"/>
 <public name="title_activity_share_view" id="0x1f0c0085" type="string"/>
 <public name="title_activity_scrolling" id="0x1f0c0083" type="string"/>
 <public name="title_activity_settings" id="0x1f0c0084" type="string"/>
 <public name="title_activity_about" id="0x1f0c007f" type="string"/>
 <public name="activity_donate" id="0x1f0c000e" type="string" />
 <public name="activity_my_apps" id="0x1f0c000f" type="string"/>

</resources>

ii. When a resource is being used by an external device, the resource must be prefixed with
a package name. For more information, see Use the resource in another Bundle.

Use custom resources in AndroidManifest
If you define a theme in AndroidManifest of your Bundle project, the code sample is
shown as follows:

<activity
 android:name=".activity.MainActivity"
 android:launchMode="singleTop"
 android:theme="@com.mpaas.demo.materialdesign:style/AppTheme.NoActionBar"
 android:windowSoftInputMode="stateHidden|stateUnchanged">
</activity>

You need to:
Add the res_slinks file in the main path of the Portal project, and add Bundle names
to the res_slinks file line by line.
At the same time, remove the manifest dependency of this Bundle from
 build.gradle . As shown in the following code:

manifest 'com.mpaas.demo.materialdesign:materialdesign-
build:1.0.0:AndroidManifest@xml'

This topic describes how to use third-party resources other than com.android.support in the

2.3.5. Use non Android support 3rd resource
library

Access Android User Guide·Choose integration
method

> Document Version: 20231226 56

This topic describes how to use third-party resources other than com.android.support in the
scenario of using the component-based access mode, which is also known as Portal&Bundle
access mode. You can download and use the sample project provided in this topic, and then
refer to the following usage method.
The sample project includes three projects: SharedResNew, ZHDemo, and ZHDemoLauncher.

SharedResNew: Bundles that need to be shared, including third-party AAR
ZHDemoLauncher: Bundle that uses third-party resources
ZHDemo: Portal project

The process of using third-party resources is mainly divided into the following four steps:
1. Import third-party resources
2. Use public.xml to export resources
3. Verify whether the resource is successfully exported
4. Use the third-party resource

Import third-party resources
In SharedResNew, the package com.flyco.tablayout:FlycoTabLayout_Lib:2.1.2@aar needs
to be used externally, so you need to import the package with the compile method in the
 api project of SharedResNew. Note that you cannot use the implementation method.

compile 'com.flyco.tablayout:FlycoTabLayout_Lib:2.1.2@aar'

Use public.xml to export resources
Export the properties you need to use in the app project. The properties will be output
through the public.xml file, and the file path is fixed as
 app/src/main/res/values/public.xml .
For example, if you want to export the property tl_bar_color , the content of public.xml
is as follows:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <public name="tl_bar_color" id="0x60010027" type="attr" />
</resources>

Where:
 name : It must be consistent with the property name required.

 id : After the first debug compilation (there is no public.xml file at this time), you can
find the value of id from app/build/generated/source/r/debug/\[com/zh/demo\]\
(package name folder\)/R.java :

 public static final int tl_bar_color=0x60010027;

 type : Refers to the class to which the property belongs. Take tl_bar_color as an
example, the corresponding class is as follows, and its type value is attr .

 public static final class attr {

 }

Access Android User Guide·Choose integration
method

> Document Version: 20231226 57

Verify whether the resource is successfully exported
Before you verify whether the resource is successfully exported, you need to make sure that
you have successfully built SharedResNew. If the build has been completed, complete the
following operations for verification.

Step 1: Find the aapt path.
You can usually find the aapt in the Android SDK.
Assuming your computer user name is “username”, the paths of aapt under different
operating systems are as follows:

Mac operating system
If your Android SDK is in the directory /Users/username/Code/android-sdk , then the aapt
path is /Users/username/Code/android-sdk/build-tools/28.0.3/aapt .
For Windows operating systems
If your Android SDK is in C:\Users\Username\AppData\Local\Android\Sdk , then the aapt
path is C:\Users\Username\AppData\Local\Android\Sdk\build-tools\28.0.3\aapt.exe .

Note
The build tool must be 26.0.0 or later versions.

Step 2: Find the local bundle package.
When you choose SharedResNew> app > build.gradle, you will see the following content:

version = "1.0.0-SNAPSHOT"
group = "com.zh.demo.shared.res"

Among them, group is the first field in maven gav; version refers to the version
number.
When you open Android Studio, you can see that the name of the app project is app
[sharedresnew-build] , then the local gav of the Bundle is
 com.zh.demo.shared.res:sharedresnew- build:1.0.0-SNAPSHOT .
The following URL is the directory of the corresponding local Maven library:

Mac operating system
 ~/.m2/repositories/com/zh/demo/shared/res/sharedresnew-build/1.0.0-SNAPSHOT/

For Windows operating systems
 C:\Users\username\.m2\respositories\com\zh\demo\shared\res\sharedresnew-build\1.0.0-
SNAPSHOT

This directory contains the following files:

ivy-1.0.0-SNAPSHOT.xml
ivy-1.0.0-SNAPSHOT.xml.sha1
sharedresnew-build-1.0.0-SNAPSHOT-AndroidManifest.xml
sharedresnew-build-1.0.0-SNAPSHOT-AndroidManifest.xml.sha1
sharedresnew-build-1.0.0-SNAPSHOT-api.jar
sharedresnew-build-1.0.0-SNAPSHOT-api.jar.sha1
sharedresnew-build-1.0.0-SNAPSHOT-raw.jar
sharedresnew-build-1.0.0-SNAPSHOT-raw.jar.sha1

Access Android User Guide·Choose integration
method

> Document Version: 20231226 58

Step 3: Run a command for verification
Based on the aapt URL that is obtained in Step 1, run the following command for verification:

Mac operating system

 /Users/username/Code/android-sdk/build-tools/28.0.3/aapt d --values resources ./shar
edresnew-build-1.0.0-SNAPSHOT-api.jar > res.txt

For Windows operating systems

 C:\Users\username\AppData\Local\Android\Sdk\build-tools\28.0.3\aapt.exe d --values r
esources ./sharedresnew-build-1.0.0-SNAPSHOT-api.jar

After you run the command, a res.txt file is generated. Use software, such as Notepad, to
open the file. The following code snippet shows part of the content of this file:

Package Groups (1)
Package Group 0 id=0x60 packageCount=1 name=com.zh.demo
 DynamicRefTable entryCount=22:
 0x3a -> com.alipay.android.liteprocess
 0x7b -> com.alipay.android.multimediaext
 0x6e -> com.alipay.android.phone.falcon.falconlooks
 0x45 -> com.alipay.android.phone.falcon.img

Search for "tl_bar_color" in the file to find the following content: If a (PUBLIC) mark appears
at the end of the first line, the third-party resource is exported. Otherwise, the export failed.

resource 0x60010027 com.zh.demo:attr/tl_bar_color: <bag> (PUBLIC)
 Parent=0x00000000(Resolved=0x60000000), Count=1
 #0 (Key=0x01000000): (color) #00000010

Use the third-party resource
Open the file where you want to use the third-party resource, for example, a layout in the
ZHDemoLauncher project. Then, add a line for an XML namespace at the top of the file. The
following code sample shows an example where the third-party resource is used in a layout
whose URL is ZHDemoLauncher/app/src/main/res/layout/main.xml :

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:abc="http://schemas.android.com/apk/res/com.zh.demo"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <!-- xxxx -->
</LinearLayout>

Access Android User Guide·Choose integration
method

> Document Version: 20231226 59

Note
In the xmlns:abc="http://schemas.android.com/apk/res/com.zh.demo" line,

 abc represents a custom name. You can set the name as you want.
 http://schemas.android.com/apk/res/ is a fixed directory and cannot be
changed.
 com.zh.demo must be the same as the value of package that you set in
 AndroidManifest.xml of the SharedResNew project. You can find the value of the
package in the TXT file that is exported from aapt. For example, in resource
0x60010027 com.zh.demo:attr/tl_bar_color , the string com.zh.demo before the
colon is the value you need.

Next, add another line where you want to use the third-party resource, as shown in the
following code snippet:

<com.flyco.tablayout.SegmentTabLayout

 abc:tl_bar_color="#f00" />

Therefore, to use the third-party resource, you must add two lines, as shown in the following
code snippet:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:abc="http://schemas.android.com/apk/res/com.zh.demo"
 android:layout_width="match_parent"
 android:layout_height="match_parent"

 android:orientation="vertical"
 tools:ignore="ResAuto">
 <com.flyco.tablayout.SegmentTabLayout
 android:id="@+id/myView"
 android:layout_width="wrap_content"
 android:layout_height="32dp"
 android:layout_gravity="center_horizontal"
 android:layout_marginTop="10dp"
 abc:tl_bar_color="#f00"
 tools:visibility="visible" />
</LinearLayout>

Now, you have completed the compilation.

Sample code
Click Download Sample Code.

2.3.6. Load and customize the framework

Access Android User Guide·Choose integration
method

> Document Version: 20231226 60

https://gw.alipayobjects.com/os/bmw-prod/9fc780b0-2a85-49de-ac30-01f5949310bf.zip

mPaaS Android framework provides a complete set of loading logics. You can implement
multiple-business development on the basis of this framework. This guide introduces the
framework startup process and describes how to add your codes to the framework to enable
startup.

Startup process
Application
When traditional Android apk starts running, the Application configured in android:name of
 application node in the AndroidManifest file is firstly loaded.
Since mPaaS Android framework has overridden the loading process, what configured in
 android:name should be the com.alipay.mobile.quinox.LauncherApplication class of
mPaaS Android framework.

<application
 android:name="com.alipay.mobile.quinox.LauncherApplication"
 android:allowBackup="true"
 android:debuggable="true"
 android:hardwareAccelerated="false"
 android:icon="@drawable/appicon"
 android:label="@string/name"
 android:theme="@style/AppThemeNew" >
</application>

Startup page
Since it may be time-consuming for the framework to load the bundle, a startup page is
required to redirect you to the application homepage when framework startup is completed.
Therefore, the com.alipay.mobile.quinox.LauncherActivity application startup page that is
provided by the mPaaS framework is configured in the AndroidManifest file.
The configuration is as follows:

<activity
android:name="com.alipay.mobile.quinox.LauncherActivity"
android:configChanges="orientation | keyboardHidden | navigation"
android:screenOrientation="portrait"
android:windowSoftInputMode="stateAlwaysHidden">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

To make developers have a better understanding of the startup process and avoid that the
startup process is modified, deleted, or disturbed by mistake, the startup process of mPaaS is
moderately encapsulated. So, the above LauncherApplication and LauncherActivity are
invisible to the developers.
To enable that the client App implements its own initialization logic during the startup
process, LauncherApplicationAgent and LauncherActivityAgent agents are designed in
mPaaS. You can implement the App’s own initialization logic in the corresponding callback by
inheriting the two classes. If you have defined these two classin bundle project, anti-
obfuscation settings need to be done for these two classes when using ProGuard for code
obfuscation, for more information, see Obfuscate Android codes.

Access Android User Guide·Choose integration
method

> Document Version: 20231226 61

Startup flow chart
The procedure of loading mPaaS Android framework is as follows:

1. When the framework is started, the main thread creates a startup page
 LauncherActivity , and then calls back the preInit method of
 LauncherActivityAgent .

2. The framework enables multidex. In the process, the framework calls back the preInit
method of LauncherApplicationAgent , reads the description file of each bundle in the
current .apk file, and creates the corresponding class loaders for all bundles.

3. After initialization, the framework calls the postInit methods of LauncherActivityAgent
and LauncherApplicationAgent .

Customization
Actually, the framework has created two classes (MockLauncherApplicationAgent and
 MockLauncherActivityAgent) in Launcher project, and the two classes respectively inherit
 LauncherApplicationAgent and LauncherActivityAgent callback interfaces. Both interfaces
are respectively called in LauncherAppliction and LauncherActivity during framework
initialization.
Configure the AndroidManifest.xml file of the Portal as follows. You can also implement
these two delegate classes in the Bundle, and modify the value of the corresponding
 meta-data in the above configuration.

 <application
 android:name="com.alipay.mobile.quinox.LauncherApplication" >

 <!-- Callback configuration of Application -->
 <meta-data
 android:name="agent.application"

android:value="com.mpaas.demo.launcher.framework.MockLauncherApplicationAgent"/>

 <!-- Callback configuration of Activity -->
 <meta-data
 android:name="agent.activity"

android:value="com.mpaas.demo.launcher.framework.MockLauncherActivityAgent"/>
 <!-- Layout configuration of the startup page -->
 <meta-data
 android:name="agent.activity.layout"
 android:value="layout_splash"/>

 </application>

Delegate classes

Access Android User Guide·Choose integration
method

> Document Version: 20231226 62

What configured in agent.application is the startup process delegate ApplicationAgent ,
shown as follows:

 public class MockLauncherApplicationAgent extends LauncherApplicationAgent {
 @Override
 protected void preInit() {
 super.preInit();
 //Before framework initialization
 }

 @Override
 protected void postInit() {
 super.postInit();
 //After framework initialization
 }
 }

The client App can perform application-level initialization in the implementation class of
 LauncherApplicationAgent . preInit() callback occurs before the framework initialization,
so do not call the relevant interfaces of the framework (MicroApplicationContext) here.
However, postInit() callback occurs after the framework initialization, you can use it.
What configured in agent.activity is the delegate of startup Activity, shown as follows:

public class MockLauncherActivityAgent extends LauncherActivityAgent {

 @Override
 public void preInit(Activity activity) {
 super.preInit(activity);
 //Before Launcher Activity startup
 }

 @Override
 public void postInit(final Activity activity) {
 super.postInit(activity);
 //After Launcher Activity startup
 //The logic of jumping to the homepage
 startActivity(activity,YOUR_ACTIVITY);
 }
}

Similar to LauncherApplicationAgent , the two callback of LauncherActivityAgent
respectively happens before and after the framework initailization, and the methods used are
also similar.

Modify startup page layout
The layout file of the startup page is also configured in the AndroidManifest.xml file of the
Portal, shown as follows.

Access Android User Guide·Choose integration
method

> Document Version: 20231226 63

<application
android:name="com.alipay.mobile.quinox.LauncherApplication" >
<!-- Layout configuration of the startup page -->
<meta-data
android:name="agent.activity.layout"
android:value="layout_splash"/>

</application>

Modify the value to the name of the custom layout file.

Note
You need to put the layout file and the relevant resources that are referenced in the
Portal project.

Gradle provides the function of configuring dependency repository and release repository.

Configure a dependency repository
The following shows an example of a common dependency repository of mPaaS:

allprojects {
 repositories {
 mavenLocal()
 flatDir {
 dirs 'libs'
 }
 maven {
 url "https://mvn.cloud.alipay.com/nexus/content/repositories/open/"
 }
 maven{url 'http://maven.aliyun.com/nexus/content/groups/public/'}
 maven{url 'http://maven.aliyun.com/nexus/content/repositories/google'}
 }
}

mavenLocal: Maven local repository. The path of the local repository also supports
modification.
flatDir: Dependency under the libs directory of the project.
Maven: The example contains the Maven repositories of Ant Financial
(mvn.cloud.alipay.com) and Alibaba Cloud (maven.aliyun.com).

You can add dependency repositories under repositories .

Configure a release repository
Gradle provides the function of configuring release repositories. This topic introduces
common examples of release repositories to help you modify the path of the local Maven
repository (~/.m2 by default) and add a custom release repository.

Release repository example

Generally, the build.gradle file contains the following configuration:

2.3.7. Manage gradle dependencies

Access Android User Guide·Choose integration
method

> Document Version: 20231226 64

Generally, the build.gradle file contains the following configuration:

uploadArchives {
 repositories {
 mavenLocal()
 }
}

This means that the release repository is Local Maven repository. That is, the .jar
package created by the project is automatically released to the local Maven repository.

Modify the local Maven repository path
Local Maven repository (mavenLocal). The default path is ~/.m2 . You can modify the path.

Customize a release repository
You can add a custom release repository as required. The following shows an example.

uploadArchives {
 mavenDeployer {
 mavenLocal()
 repository(url: "your_repository_url") {
 authentication(userName: '*****', password: '*****')
 }
 snapshotRepository(url: "your_repository_url") {
 authentication(userName: '*****', password: '*****')
 }
 }
}

Apps developed on mPaaS Android clients are compiled using Java codes which may easily be
decompiled. Therefore, we need to use Android ProGuard obfuscation files to protect Java
source codes.
ProGuard is a tool used to compress, optimize, and obfuscate Java bytecode files.

Compression refers to detection and removal of unused classes, fields, methods, and
attributes.
Optimization refers to analysis and optimization of bytecode.
Obfuscation refers to the use of meaningless short variables to rename classes, variables,
and methods.

The use of ProGuard makes code simpler, more efficient, and more difficult to be reversely
engineered or hacked.

Prerequisites
You have configured the mPaaS project.

About this task
For the mPaaS project using the component-based scheme, each Bundle will be compiled to
generate an obfuscated dex file. Therefore, obfuscation files are configured on the Bundle
project basis. A Portal project generally has no code and thus obfuscation will not be enabled.

2.3.8. Obfuscate Android codes

Access Android User Guide·Choose integration
method

> Document Version: 20231226 65

Sample code
Gradle configuration

android {
 compileSdkVersion 23
 buildToolsVersion "19.1.0"

 defaultConfig {
 applicationId "com.youedata.xionganmaster.launcher"
 minSdkVersion 15
 targetSdkVersion 23
 versionCode 1
 versionName "1.0"
 }
 buildTypes {
 release {
 // Obfuscation switch, On or Off
 minifyEnabled true
 // Specify the obfuscation rule file.
 proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-
rules.pro'
 }
 }
 lintOptions {
 checkReleaseBuilds false
 // Or, if you prefer, you can continue to check for errors in release builds,
 // but continue the build even when errors are found:
 abortOnError false
 }
}

Example of an obfuscation file
The following obfuscation is a basic example (To add an additional third party library, you
need to add another obfuscation. Usually the configuration files can be found on the third
party library’s website) :

 # Add project specific ProGuard rules here.
 # By default, the flags in this file are appended to flags specified
 # in ${sdk.dir}/tools/proguard/proguard-android.txt
 # You can edit the include path and order by changing the proguardFiles
 # directive in build.gradle.

 # For more details, see [Shrink your code and resources]
(http://developer.android.com/guide/developing/tools/proguard.html).

 # Add any project specific keep options here:

 # If your project uses WebView with JS, uncomment the following
 # and specify the fully qualified class name to the JavaScript interface
 # class:
 # -keepclassmembers class fqcn.of.javascript.interface.for.webview {
 # public *;
 # }
 -optimizationpasses 5

Access Android User Guide·Choose integration
method

> Document Version: 20231226 66

 -dontusemixedcaseclassnames
 -dontskipnonpubliclibraryclasses
 -dontpreverify
 -verbose
 -ignorewarnings
 -optimizations !code/simplification/arithmetic,!field/*,!class/merging/*

 -keep public class * extends android.app.Activity
 -keep public class * extends android.app.Application
 -keep public class * extends android.app.Service
 -keep public class * extends android.content.BroadcastReceiver
 -keep public class * extends android.content.ContentProvider
 -keep public class com.android.vending.licensing.ILicensingService
 -keep public class com.alipay.mobile.phonecashier.*
 -keepnames public class *
 -keepattributes SourceFile,LineNumberTable
 -keepattributes *Annotation*

 #-keep public class * extends com.alipay.mobile.framework.LauncherApplicationAgent
{
 # *;
 #}

 #-keep public class * extends com.alipay.mobile.framework.LauncherActivityAgent {
 # *;
 #}

 -keepclasseswithmembernames class * {
 native <methods>;
 }

 -keepclasseswithmembernames class * {
 public <init>(android.content.Context, android.util.AttributeSet);
 }

 -keepclasseswithmembernames class * {
 public <init>(android.content.Context, android.util.AttributeSet, int);
 }

 -keepclassmembers enum * {
 public static **[] values();
 public static ** valueOf(java.lang.String);
 }

 -keep class * extends java.lang.annotation.Annotation { *; }
 -keep interface * extends java.lang.annotation.Annotation { *; }

 -keep class * implements android.os.Parcelable {
 public static final android.os.Parcelable$Creator *;
 }

 -keep public class * extends android.view.View{
 !private <fields>;
 !private <methods>;
 }

Access Android User Guide·Choose integration
method

> Document Version: 20231226 67

 }

 -keep class android.util.**{
 public <fields>;
 public <methods>;
 }

 -keep public class com.squareup.javapoet.**{
 !private <fields>;
 !private <methods>;
 }
 -keep public class javax.annotation.**{
 !private <fields>;
 !private <methods>;
 }
 -keep public class javax.inject.**{
 !private <fields>;
 !private <methods>;
 }
 -keep interface **{
 !private <fields>;
 !private <methods>;
 }
 # for dagger
 -keep class * extends dagger.internal.Binding
 -keep class * extends dagger.internal.ModuleAdapter

 -keep class **$$ModuleAdapter
 -keep class **$$InjectAdapter
 -keep class **$$StaticInjection

 -keep class dagger.** { *; }

 -keep class javax.inject.**{ *; }
 -keep class * extends dagger.internal.Binding
 -keep class * extends dagger.internal.ModuleAdapter
 -keep class * extends dagger.internal.StaticInjection

 # for butterknife
 -keep class butterknife.* { *; }
 -keep class butterknife.** { *; }
 -dontwarn butterknife.internal.**
 -keep class **$$ViewBinder { *; }

 -keepclasseswithmembernames class * {
 @butterknife.* <fields>;
 }

 -keepclasseswithmembernames class * {
 @butterknife.* <methods>;
 }

Access Android User Guide·Choose integration
method

> Document Version: 20231226 68

Note
If the framework classes ‘LauncherApplicationAgent’ and ‘LauncherActivityAgent’ are
defined in your Bundle project, the anti-obfuscation settings must be configured.

Avoid obfuscating general-purpose components
If General-purpose components are registered to metainfo.xml , the compiler will check
the presence of these components. Please avoid obfuscating these components, or the
compilation will fail. For example, when the following components are registered:

 <metainfo>
 <service>
 <className>com.mpaas.cq.bundleb.MyServiceImpl</className>
 <interfaceName>com.mpaas.cq.bundleb.api.MyService</interfaceName>
 <isLazy>true</isLazy>
 </service>
</metainfo>

In the obfuscation configuration, you need to add:

 -keep class com.mpaas.cq.bundleb.MyServiceImpl
 -keep class com.mpaas.cq.bundleb.api.MyService

We recommend you not to access MultiDex in Portal&Bundle access mode, unless you are
using a single portal project where the multiDexEnabled true is required.
If your bundle is too big, you can only continue by the method of splitting the bundle. Do not
activate the multidex support in the bundle.

To cope with the possibility of continuous crashes upon startup, mPaaS has established a
data cleanup mechanism. When the application is stuck or important threads (such as the
main thread, multidex.init thread, ApplicationAgent.init thread, etc.) crash before the mPaaS
framework is started, the framework may trigger data cleanup. This data cleanup mechanism
is customizable, and can be configured to clean up the SharedPreference and database in
different situations, and even wipe all the data in an application under very special
circumstances to ensure the normal operation of the application. This mechanism is currently
available for 10.1.32, 10.1.60, and 10.1.68 series baselines.
To protect important data, mPaaS provides the cleanup whitelist function in the data cleanup
mechanism. You can protect a target file from being cleaned up by adding it to the cleanup
whitelist.

Note
The data cleanup mechanism is available only in Component-based access mode.

Cleanup whitelist scheme 1.0

The cleanup whitelist scheme 1.0 invokes an API in MPFramework to dynamically set the

2.3.9. Attention for using MultiDex in mPaaS
Portal&Bundle projects

2.3.10. Data cleansing whitelist

Access Android User Guide·Choose integration
method

> Document Version: 20231226 69

https://tech.antfin.com/docs/2/85908

The cleanup whitelist scheme 1.0 invokes an API in MPFramework to dynamically set the
whitelist when appropriate.

Supported baselines
The cleanup whitelist scheme 1.0 supports 10.1.32, 10.1.60, and 10.1.68 series baselines.
If the cleanup mechanism has been triggered due to crash before the whitelist is set, the
cleanup whitelist scheme 1.0 will not come into effect. If you use the 10.1.32 series baseline,
we recommend that you upgrade the baseline to 10.1.60 or 10.1.68 to use the upgraded
cleanup whitelist scheme 2.0. For more information, see Cleanup whitelist scheme 2.0.

Procedure
Invoke the API to set the cleanup whitelist where appropriate. The API is as follows:

/**
 * Sets the SharedPreference whitelist. If this has been set before, the previous d
ata will be cleared.
 */
 public static void setSPWhiteList(List<String> whiteList);

 /**
 * Adds another SharedPreference whitelist.
 *
 * @param whiteList
 */
 public static void addSPWhiteList(List<String> whiteList);

 /**
 * Gets the set database whitelist.
 *
 * @return
 */
 public static List<String> getDBWhiteList();

 /**
 * Sets the database whitelist. If this has been set before, the previous data will
be cleared.
 */
 public static void setDBWhiteList(List<String> whiteList) ;

 /**
 * Adds another database whitelist.
 *
 * @param whiteList
 */
 public static void addDBWhiteList(List<String> whiteList);

Cleanup whitelist scheme 2.0
The cleanup whitelist scheme 2.0 works in such a way that when the cleanup mechanism is
triggered, the framework loads the developer-configured whitelist by reflection to set classes,
and first reads the defined cleanup policy.

Supported baselines
The cleanup whitelist scheme 2.0 supports 10.1.60 and 10.1.68 series baselines. Where:

Access Android User Guide·Choose integration
method

> Document Version: 20231226 70

The 10.1.60 baseline needs to be 10.1.60.10 or later versions.
The 10.1.68 baseline needs to be 10.1.68.4 or later versions.

Procedure
1. Inherit com.mpaas.framework.adapter.api.ClearDataStrategy to implement related APIs.

 public abstract class ClearDataStrategy {
 public ClearDataStrategy() {
 }

 /**
 * Whether to enable the cleanup mechanism.
 * If false is returned, no file will be cleared up.
 * If it returns true, the cleanup strategy will be implemented. You can use get
SPWhiteList and getDBWhiteList to return a list of files that need to be guaranteed.
 *
 * @return
 */
 public abstract boolean enableClearDataStrategy();

 /**
 * If the cleanup mechanism is enabled, the SharedPreference file that needs to
be protected is returned through this API.
 *
 * @return
 */
 public List<String> getSPWhiteList() {
 return null;
 }

 /**
 * If the cleanup mechanism is enabled, the db file that needs to be protected i
s returned through this API.
 *
 * @return
 */
 public List<String> getDBWhiteList() {
 return null;
 }
 }

2. Configure the strategy information in the AndroidManifest of Portal.

Note
Since ClearDataStrategy needs to be called reflectively, ClearDataStrategy cannot
be confused.

 <meta-data
 android:name="ClearDataStrategy"
 android:value="com.mpaas.demo.launcher.ClearDataStrategy" />

Access Android User Guide·Choose integration
method

> Document Version: 20231226 71

There may be some redundant permissions in the default portal project due to historical
reasons such as Android system upgrade and mPaaS business development, as shown in the
following list. These permissions are no longer needed in the current mPaaS version. You can
delete the permissions or keep the permissions as needed.

High-risk cleanable permissions
The following five permissions are high-risk permissions and can be cleared.

<uses-permission android:name="android.permission.RECEIVE_SMS" />
<uses-permission android:name="android.permission.READ_SMS" />
<uses-permission android:name="android.permission.READ_LOGS" />
<uses-permission android:name="android.permission.BATTERY_STATS" />
<uses-permission android:name="android.permission.MANAGE_FINGERPRINT" />

Unnecessary permissions
The following permissions are not high-risk privacy permissions, but they are permissions
that mPaaS products do not need to use externally. If you have special needs, you can keep
related permissions, otherwise you can remove them.

<uses-permission android:name="com.alipay.permission.ALIPAY_UPDATE_CREDENTIALS" />
<uses-permission android:name="com.yunos.permission.TYID_SERVICE" />
<uses-permission android:name="com.taobao.permission.USE_CREDENTIALS" />
<uses-permission android:name="com.htc.launcher.permission.READ_SETTINGS" />
<uses-permission android:name="com.majeur.launcher.permission.UPDATE_BADGE" />
<uses-permission android:name="com.aliyun.permission.TYID_SERVICE" />
<uses-permission android:name="com.htc.launcher.permission.UPDATE_SHORTCUT" />
<uses-permission android:name="com.anddoes.launcher.permission.UPDATE_COUNT" />
<uses-permission android:name="com.yunos.permission.STORAGE_SERVICE" />
<uses-permission android:name="com.aliyun.permission.STORAGE_SERVICE" />
<uses-permission android:name="com.alipay.permission.ALIPAY_USE_CREDENTIALS" />
<uses-permission android:name="com.sonyericsson.home.permission.BROADCAST_BADGE" />
<uses-permission android:name="android.permission.SYSTEM_ALERT_WINDOW" />
<uses-permission android:name="nxp.permission.ACCESS_WALLET_SERVICE" />
<uses-permission
android:name="com.samsung.android.authservice.permission.READ_CONTENT_PROVIDER" />
<uses-permission android:name="com.taobao.permission.UPDATE_CREDENTIALS" />
<uses-permission android:name="com.yunos.permission.TYID_MGR_SERVICE" />
<uses-permission android:name="com.aliyun.permission.TYID_MGR_SERVICE" />

<uses-permission android:name="com.android.launcher.permission.UNINSTALL_SHORTCUT" />
<uses-permission android:name="com.android.launcher.permission.INSTALL_SHORTCUT" />

<uses-permission android:name="android.permission.AUTHENTICATE_ACCOUNTS" />
<uses-permission android:name="android.permission.USE_CREDENTIALS" />
<uses-permission android:name="android.permission.MANAGE_ACCOUNTS" />
<uses-permission android:name="android.permission.GET_ACCOUNTS" />
<uses-permission android:name="android.permission.WRITE_SETTINGS" />
<uses-permission android:name="android.permission.READ_PROFILE" />
<uses-permission android:name="android.permission.USE_FINGERPRINT" />

2.3.11. Remove privacy permissions

Access Android User Guide·Choose integration
method

> Document Version: 20231226 72

The regulatory authority requires that the app cannot call related sensitive APIs before the
user clicks the Agree button in the privacy agreement dialog box. In response to this
regulatory requirement, the baselines of mPaaS Android 10.1.32.17 or later versions and
10.1.60.5 or later versions are supported. Refer to this topic to modify the project according
to your actual situation.

Procedure

Important
The Activity that pops up the privacy dialog box cannot inherit the BaseActivity of mPaaS,
because BaseActivity will collect embedded data, which will cause the App to collect
private data before agreeing to the privacy policy.

1. Create a new callback class of privacy permission dialog box. Create a new class and
implement the PrivacyListener API operation. For the implementation of the class, see
the following code:

2.3.12. Use privacy permission pop-ups
(Portal&Bundle)

Access Android User Guide·Choose integration
method

> Document Version: 20231226 73

public class MyPrivacyListener implements PrivacyListener {
 // Make a privacy permission dialog box in this method
 @Override
 public void showPrivacy(final Activity activity, final PrivacyResultCallback privacy
ResultCallback) {
 if(null==privacyResultCallback){
 return;
 }
 if(null!=activity){
 new AlertDialog.Builder(activity)
 .setTitle("Privacy permission dialog box")
 .setMessage("Main content")
 .setPositiveButton("Agree to continue to use", new
DialogInterface.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialogInterface, int i) {
 // After you click OK, cancel the dialog box
 dialogInterface.cancel();
 // Set the dialog box result to true
 privacyResultCallback.onResult(true);
 }
 })
 .setNegativeButton("Disagree and exit", new
DialogInterface.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialogInterface, int i) {
 // After you click Disagree, cancel the dialog box
 dialogInterface.cancel();
 // Set the dialog box result to false
 privacyResultCallback.onResult(false);
 // End the current activity, the framework will kill the proc
ess
 if(null!=activity){
 activity.finish();
 }
 }
 })
 .setCancelable(false)
 .create()
 .show();
 }else{
 // If the activity is empty, the callback result is set to false
 privacyResultCallback.onResult(false);
 }
 }
}

If you are using a 10.1.68.42 and above baseline and need to clear the privacy state, please
implement the PrivacyListener2 interface and implement the shouldClear function.
The following code is a description of the shouldClear function:

Access Android User Guide·Choose integration
method

> Document Version: 20231226 74

@Override
public boolean shouldClear(Context context) {
 //When the user does not agree to the privacy agreement, the default is to use Shar
edPreferences to store false and set it to return false. If you need to pop up the wi
ndow again, you need to set the true stored in the SP to return true;
 return false;//The value of return is the boolean value stored in SP.
}

During the callback, a dialog box must be used to trigger windowFocusChange . The
framework will perform subsequent operations after triggering. Because the callback class
will be reflectively initialized by the system framework and scheduled very early, do not add
a constructor with a method name. In addition, do not add specific logic to the constructor.
If you need to use resources in the dialog box, you need to use different methods under
different baselines.

Under the 32 baseline, you need to use the following method:

Resources resource = QuinoxAgent.getInstance().getResourcesByBundle("bundlename of
the Bundle where the resource is located");

Note
The bundlename can be checked in /build/intermediates/bundle/META-
INF/BUNDLE.MF in the main module of the Bundle project.

Under the 60 baseline, you need to create the res_slinks file under the main module
of the Portal project, and write the group and artifact of the Bundle where your
resources are located in the res_slinks file according to the rule. The rule is group-
artifact.split("-")[0] . When the content is too long, you need to check whether the
content is correct if you want to add a new line.For example:

Access Android User Guide·Choose integration
method

> Document Version: 20231226 75

group = com.mpaas.demo.materialdesign`
`artifact = materialdesign-build`

The final configuration written into the res_slinks file is com.mpaas.demo.materialdesign-
materialdesign .

After completing the preceding content, you can directly use
 LayoutInflator.inflate(R.layout.xxx) to call resources.

2. Register the callback class in AndroidManifest .Register the callback class of privacy
permission dialog box in the AndroidManifest of portal , and value is the full path of
the callback class implemented just now. The code is shown as follows. Note that you need
to replace the full path and class name with your own callback class.

 <!--callback of privacy permission dialog box-->
 <meta-data
 android:name="privacy.listener"
 android:value="com.mpaas.demo.launcher.MyPrivacyListener" />

3. Start up pop-up box interception. In the preInit of MockLauncherApplicationAgent , add
the dialog box interception. The code is as follows:

 //Check if you want to display a privacy permission dialog box to the user
 if(! PrivacyUtil.isUserAgreed(getApplicationContext())){
 PermissionGate.getInstance().waitForUserConform(mContext,
getMicroApplicationContext());
 }

4. Start the first Activity. In the postInit of MockLauncherActivityAgent , do the first
 Activity jump. The code is as follows:

Access Android User Guide·Choose integration
method

> Document Version: 20231226 76

 // Determine whether the user privacy permission has been obtained
 if(PrivacyUtil.isUserAgreed(activity)){
 new Handler().postDelayed(new Runnable() {
 public void run() {
 Intent intent = new Intent(activity, MainActivity.class);
 activity.startActivity(intent);
 activity.finish();
 }
 }, 200);
 }

Access Android User Guide·Choose integration
method

> Document Version: 20231226 77

Baseline refers to a collection of stable versions for a series of features and is the basis of
further development. While mPaaS is developed on the basis of a specific version of Alipay.
Thus, for mPaaS, baseline is the collection of SDK based on the version. With the continuous
upgrading of mPaaS, multiple versions for the baseline will be provided.

10.2.3 baseline
Add the following features based on the version 10.1.68:

From mPaaS 10.2.3.4, targetSdkVersion 31 is supported.
Support targetSdkVersion 30.
The CPU architecture only supports armeabi-v7a and arm64-v8a , armeabi is no longer
supported.
The access method is no longer maintained as mPaaS Inside. If the original mPaaS Inside
access needs to be upgraded to 10.2.3, please change it to mPaaS AAR access.
It is adapted to Android 13 by default, and no additional adaptation work is required after
the upgrade.

For more details, see 10.2.3 release notes.

10.1.68 baseline
Add the following features based on the version 10.1.60:

Provide Native AAR access mode, which is closer to native experience.
Provide better support for the single component, and provide single component demo.
Optimize the size of single component SDK to reduce the general app package size
effectively.
Split the mini program at a finer granularity, so users can choose according to their needs.
Update UC kernel to version 3.0, and provide better performance and higher stability.

For more details, see 10.1.68 release notes.

10.1.60 baseline
Add the following features based on the version 10.1.32:

Add the official version of Mini Program. The official version of Mini Program has a complete
set of APIs, with greatly improved stability and compatibility. For details about the new
features on the mini program IDE including debug, preview and publish, see Mini Program
IDE.
A significant optimization has been executed on the HTML5 Container generally. This
optimization provides a more simplified access process, enhances the capabilities
continuously, and improves compatibility and stability greatly. For how to upgrade HTML5
Container and Offline Package, see Upgrade HTML5 Container.
The Message Push Service component provides support for OPPO and vivo push.
Add management supporting feature to the social sharing component, and provide
simplified access process.

3.Choose baseline
3.1. Baseline introduction

Access Android User Guide·Choose baseline

> Document Version: 20231226 78

Add the Mobile Content Delivery Platform component. Mobile Content Delivery Platform
provides the ability to personalize advertisement within the app, supports personalized
advertisement placement for targeted customers, and helps app operators to reach users
accurately and timely. For details, see About Mobile Content Delivery Platform.

For more details, see 10.1.60 release notes.

Select baseline
10.1.68 baseline supports Native AAR access mode officially. If you need to use the Native
AAR access mode, please select 10.1.68 baseline.
10.1.60 baseline does not support Native AAR access mode at the moment.

Based on version 10.1.60, mPaaS 10.1.68 has been updated as follows:
The new method of AAR access is closer to the native experience For more information
about the AAR access method, see The access method of native AAR.
Optimize SDK size of the single component to reduce the size of the general application
packs effectively.
Split the mini program at the finer granularity allows users to choose according to their
needs.
Update UC kernel to version 3.0, and provide better performance and higher stability.

Upgrading instructions
Upgrading instructions under the AAR access method
If you have a project using the access method of native AAR, complete upgrading with the
following steps.

1. Complete environment configuration.

gradle = 6.5 // You need to use 6.5 or later versions
 com.android.tools.build:gradle:4.0.0 //You need to use 4.0.0 or later versions
 com.android.boost.easyconfig:easyconfig:2.7.5

Important
If you need to set com.android.tools.build:gradle to 4.2 or above, you need to
configure the following in the gradle.properties file:
 android.enableResourceOptimizations=false .

2. See the Upgrading the mPaaS plug-in document. Upgrade the plug-in of Android Studio
mPaaS to 2.20031016 or later versions.

3. In the current project of Android Studio, click mPaaS > Baseline Upgrading, select
10.1.68, then click OK.

4. After upgrading, check the build.gradle file of the root directory. If the
 ext.mpaas_baseline field is 10.1.68 , the upgrading is completed.

Upgrading instructions under the Inside access method
If you have a project based on the Inside access method, complete upgrading with the
following steps.

1. Complete environment configuration.

3.2. mPaaS 10.1.68 upgrade guide

Access Android User Guide·Choose baseline

> Document Version: 20231226 79

 gradle = 6.2 // You need to use 4.4 or later versions
 com.android.tools.build:gradle:3.5.3
 com.alipay.android:android-gradle-plugin:3.5.14
 com.android.boost.easyconfig:easyconfig:2.7.5

2. See the Upgrading the mPaaS plug-in document. Upgrade the plug-in of Android Studio
mPaaS to 2.20031016 or later versions.

3. In the current project of Android Studio, click mPaaS > Baseline Upgrading, select
10.1.68, then click OK.

4. After upgrading, check the mpaas_packages.json file. If the base_line field is
 10.1.68 , the upgrading is completed.

Upgrading instructions under the component-based access
(Portal&Bundle), namely Portal Bundle
If you have a project with access based on the Portal&Bundle, complete upgrading with the
following steps.

1. Complete environment configuration.

gradle = 4.4
 com.android.tools.build:gradle:3.0.1
 com.alipay.android:android-gradle-plugin:3.0.0.9.13
 com.android.boost.easyconfig:easyconfig:2.7.5

2. See the Upgrading the mPaaS plug-in document. Upgrade the plug-in of Android Studio
mPaaS to 2.20031016 or later versions.

3. In the current project of Android Studio, click mPaaS > Baseline Upgrading, select
10.1.68, then click OK.

4. After upgrading, check the mpaas_packages.json file. If the base_line field is
 10.1.68 , the upgrading is completed.

Upgrade to the latest Gradle plug-in
The version of the Android Gradle Plugin provided by Google is 3.5.x at the moment. mPaaS
also provides the plug-in of 3.5.x version as the adapter, which supports the APIs of Google
Android Gradle Plugin 3.5.3 and Gradle 6.0. You can upgrade Gradle plug-ins according to
your needs. See the Upgrade to the latest Gradle plug-in document.

Change in the component management
After upgrading to 10.1.68, the following components are changed. If you chose these
components before, you need to execute operations again according to the following
changes.
For more information, see Component management.

FRAMEWORK has been changed as optional.
MAP has been changed to TINYAPP-MAP TINY MAP.
TINYPROGRAM has been changed to TINYAPP.
MINIPROGRAM-BLUETOOTH has been deleted, and by default has been combined to
TINYAPP and Mini program.
MINIPROGRAM-MEDIA has been changed to TINYAPP-MEDIA.
TINYVIDEO has been deleted. Mini program videos are not provided at the moment.

Access Android User Guide·Choose baseline

> Document Version: 20231226 80

Add UCCORE UC Kernel. If you need to use UC core such as HTML5 containers or mini
programs, add this component manually.

Component usage and upgrade instructions
HTML5 containers
From 10.1.68 baseline, the usage of custom title bar has been changed. For more
information, see Custom title bar(10.1.68).

UC core
Upgrading are made on UC core in 10.1.68 baseline. Retrieve the relevant sections such as
the front-end page content completely to avoid the compatibility problems.

Component API changes
HTML5 containers
H5TitleView
Add some interfaces for H5TitleView. For more information, see Custom title bar(10.1.68).

MPNebula
Add interfaces and MicroApplication app parameters.

/**
 * Start an online URL.
 *
 * @param app micro app
 * @param url: online URL
 */
public static void startUrl(MicroApplication app, String url)

 /**
 * Start an online URL.
 *
 * @param app micro app
 * @param url: online URL
 * @param param: startup parameters
 */
public static void startUrl(MicroApplication app, String url, Bundle param)

Scan
In the Inside or AAR mode, if not accessing to the framework, you need to use the following
MPScan method to activate the standard UI of scan:

startMPaasScanActivity(Activity activity, ScanRequest scanRequest, ScanCallback scanCal
lback);

The parameter is in exact match with the original ScanService.

About the official version of mPaaS 10.1.60
10.1.60 baseline is adapted to Android 10.

3.3. mPaaS 10.1.60 upgrade guide

Access Android User Guide·Choose baseline

> Document Version: 20231226 81

The official version of the mini program component is added on 10.1.60 baseline. The
official version of the mini program has a complete set of APIs, with greatly improved
stability and compatibility. For details about the new features on the mini program IDE
including debug, preview and publish, see The mini program IDE.
A significant optimization has been executed on the HTML5 container generally for
10.1.60 baseline. This optimization provides a more simplified access process, enhance the
capabilities continuously, and improves compatibility and stability greatly. For the
upgrading of the HTML5 container and off-line packs, see Upgrading instructions for the
HTML5 container.
In 10.1.60 baseline, add supporting feature on the message push component for push
services through OPPO and Vivo.
Add management supporting features to the social sharing component for 10.1.60
baseline, and provide the simplified access process. For the upgrading of social sharing,
see Migrate to 10.1.60 baseline.
The general component compatibility and stability of 10.1.60 baseline are improved
significantly, and the features are also enhanced. For the specific publish instructions, see
Publish instructions for Android SDK.

Upgrading guide for the official version of mPaaS 10.1.60
Procedure

1. Upgrade the Android Studio mPaaS plug-in to v2.19123015 or later versions.
For more information about upgrading the mPaaS plug-in, see Upgrade the mPaaS plug-in.

2. In the current project of Android Studio, click mPaaS > Baseline Upgrading, select
10.1.60, then click OK.

3. After upgrading, check if the field “base_line” is 10.1.60 in mpaas_packages.json, which
means upgrading completes.

Note
When you upgrade 10.1.60-beta baseline to the official version, you need to follow the
preceding steps as well.

Component usage and upgrade instructions
In 10.1.60 baseline, a significant modification is made on the access and usage for the HTML5
container and mini program component. If accessing to the preceding components, you need
to check the following instructions:

Check Upgrading instructions for the HTML5 container to understand more information
about the upgrading of the HTML5 container and off-line packs.
Check Upgrading instructions for the mini program to understand more information about
upgrading for the mini program.
Upgrade the access method of social sharing SDK. Check Migrate to 10.1.60 baseline to
understand more information about the upgrading for social sharing components.
Notes:

From 10.1.60, sharing SDK are using the mPaaS plug-in to manage. If you need to install
the sharing component, see Migrate to 10.1.60 baseline for the specific operations.
If you do not use the plug-in to perform sharing SDK access, the updating for sharing SDK
upgrading and debugging will not be in a timely manner.

Component API changes

Access Android User Guide·Choose baseline

> Document Version: 20231226 82

The adaptation layer is added on the mPaaS component from 10.1.32 baseline. You are
recommended to use the API with the adaptation layer. For more details, see the following
upgrading instructions for the early versions in each component document:

Mobile analysis: Add adapters and simplify the usage. See Custom event log.
Mobile push: Add adapters and simplify the usage. See Mobile push.
Mobile sync: Add adapters and simplify the usage. See Mobile sync.
Version upgrading: Add adapters and simplify the usage. See Version upgrading.
Switch configuration: Add adapters and simplify the usage. See Switch configuration.
HTML5 containers:

Add adapters and simplify the usage. See HTML5 containers SDK 10.1.32.
Change the method of container configuration. If the version is 10.0.18 before upgrading,
you need to use the new method of container configuration. See Container configuration
10.1.32. Otherwise, your container configuration will not take effect.
References for 10.1.60 baseline change Upgrading instructions.

Mini programs:
Firstly, you need to upgrade the HTML5 container.

Note
We strongly suggest you to modify the code and use the common layer method, namely
the adaptation layer method, instead of using the underlying layer method directly.
Because some underlying layer methods may be changed or abandoned in later versions.
You may need to take lots of time adapting them in future updates if you continue to use
them.

Custom dependency configuration
Check all the dependency configurations of dependencies in build.gradle . Then confirm
if the configuration has bundle dependency of the mPaaS component. If the dependency is
confirmed and the SDK is upgraded from the earlier version such as 10.1.32 to version
10.1.60, you may need to recustomize your library based on the new version. Otherwise,
problems such as incompatibility may occur. You can open a ticket or contact the mPaaS
support to confirm.

Access Android User Guide·Choose baseline

> Document Version: 20231226 83

https://workorder-intl.console.aliyun.com/console.htm?spm=a3c0i.7911826.9135018350.28.44193870CroYX5&lang=#/ticket/createIndex

The mPaaS product relies on some third-party SDKs. Therefore, you may experience conflicts
between third-party libraries already integrated in your project and the mPaaS SDKs during
the process of accessing mPaaS.
The mPaaS product relies on some third-party SDKs. Therefore, you may experience conflicts
between third-party libraries already integrated in your project and the mPaaS SDKs during
the process of accessing mPaaS.
To address potential conflicts, mPaaS provides the ability to remove third-party SDKs from
within mPaaS, see:

Native AAR method
Portal & Bundle methods

The version selected for use by mPaaS is highly stable and secure. If you remove a third-party
library that mPaaS relies on, and you are using a different version of the SDK than the third-
party SDK used by mPaaS, perform sufficient and adequate testing to ensure stable function.
In case of a dependency conflict, please refer to the following solutions:

Resolve AMAP Positioning conflicts
Resolve AMAP Map conflicts
Resolve SecurityGuard conflicts
Resolve Alibaba utdid conflicts
Resolve wire/okio conflicts
Resolve fastjson conflicts
Resolve android support conflicts

mPaaS is built with the AMAP Positioning SDK. If your app needs to be launched in Google
Play Store and also integrates with the official version of the SDK provided by AMAP that can
be approved by Google, there will be a conflict with AMAP Positioning.

Important
The 10.1.32 baseline does not support self-integration of the positioning SDK, so there is
no such conflict.

Solution
Remove the built-in AMAP Positioning SDK from mPaaS.

Procedure

4.Solve dependency
confilction
4.1. Solve dependency conflicts

4.2. Solve conflict with
dependency on Amap location

Access Android User Guide·Solve dependency
confilction

> Document Version: 20231226 84

1. Confirm the version of the AMAP Positioning SDK used by mPaaS so that you can select the
same or a similarly reviewed and approved version.

'com.alipay.android.phone.mobilecommon:AMapSearch:6.1.0_20180330@jar'
'com.alipay.thirdparty.amap:amap-location:4.7.2.20190927@jar'

2. Get the group:artifact information for the AMAP Positioning SDK used by mPaaS.

'com.mpaas.group.amap:amap-build'

3. Remove the AMAP Positioning SDK from mPaaS.
AAR method

configurations {
all*.exclude group:'com.mpaas.group.amap', module: 'amap-build'
}

Portal & Bundle

mpaascomponents {
excludeDependencies = [
 "com.mpaas.group.amap:amap-build"
]
}

mPaaS is built with the AMAP Map SDK. There would be a conflict with AMAP Map, if your app
needs to be launched on Google Play Store, but it also integrates with an official AMAP SDK
that can be approved by Google.

Solution
Remove the built-in AMAP Map SDK from mPaaS.

Procedure
1. Confirm the version of the AMAP Map SDK used by mPaaS so that you can select the same

or a similarly reviewed and approved version.

'com.alipay.android.phone.mobilecommon:AMap-2DMap:5.2.1_20190114@jar'

2. Get the group:artifact information for the AMAP Map SDK used by mPaaS.

'om.alipay.android.phone.thirdparty:amap3dmap-build'

3. Remove the AMAP Map SDK from mPaaS.
AAR method:

configurations {
all*.exclude group:'com.alipay.android.phone.thirdparty', module: 'amap3dmap-build'
}

Portal & Bundle:

4.3. Solve conflict with
dependency on Amap

Access Android User Guide·Solve dependency
confilction

> Document Version: 20231226 85

mpaascomponents {
excludeDependencies = [
 "com.alipay.android.phone.thirdparty:amap3dmap-build"
]
}

Conflict description
If you are using mPaaS along with other Alibaba SDKs, there may be a conflict with the
SecurityGuardSDK.

Solution
mPaaS allows you to remove the mPaaS SecurityGuard library and use the security guard
library provided by other Alibaba SDKs.

Procedure
1. Confirm the version of the SecurityGuard SDK currently used by mPaaS in order to select

other Alibaba security guard libraries that are the same or similar.

'SecurityGuardSDK-without-resources-5.4.2009'

2. Get the group:artifact information for the SecurityGuard SDK used by mPaaS.

'com.alipay.android.phone.thirdparty:securityguard-build'

3. Remove SecurityGuard from mPaaS.
AAR method

configurations {
all*.exclude group:'com.alipay.android.phone.thirdparty', module: 'securityguard-bu
ild'
}

mPaaS Inside and Portal & Bundle

mpaascomponents {
excludeDependencies = [
 "com.alipay.android.phone.thirdparty:securityguard-build"
]
}

4. Resolve image conflicts.

4.4. Solve conflict with
dependency on security guard

Access Android User Guide·Solve dependency
confilction

> Document Version: 20231226 86

i. Add the image suffix to config and compile.
Add "authCode": "1234" to the config file, where 1234 can be any string; we
recommend you to use 4 digits.

{
"appId":"xxx",
"appKey":"xxx",
"base64Code":"xxx",
"packageName":"xxx",
"rootPath":"xxx",
"workspaceId":"xxx",
"rpcGW":"xxx",
"mpaasapi":"xxx",
"pushPort":"xxx",
"pushGW":"xxx",
"logGW":"xxx",
"syncport":"xxx",
"syncserver":"xxx",
"authCode": "1234"
}

ii. Verify that the image suffix is in effect.
Check if the generated apk has yw_1222_1234.jpg image in drawable and the following
information in AndroidManifest by decompiling.

<meta-data
android:name="security_guard_auth_code"
android:value="1234" />

Note
Image conflict resolution only supports 10.1.32.7 and above, 10.1.60 (beta version
requires beta.7 and above) and 10.1.68 baseline versions.

Conflict description
If you are using mPaaS along with the Alibaba SDKs, you may experience utdid conflicts. In
such a case, please refer to the following solutions.

Solution
Remove the mPaaS utdid library and use the utdid provided by other Alibaba SDKs.

Procedure
1. Confirm the version of the utdid SDK used by mPaaS so that you can select the same or a

similarly reviewed version.

'com.taobao.android:utdid4all:1.5.1.3@jar'

2. Get the group:artifact information for the utdid SDK used by mPaaS.

4.5. Solve conflict with
dependency on utdid

Access Android User Guide·Solve dependency
confilction

> Document Version: 20231226 87

Get the group:artifact information for the utdid SDK used by mPaaS.
'com.alipay.android.phone.thirdparty:utdid-build'

3. Remove mPaaS utdid SDK.
AAR method

configurations {
all*.exclude group:'com.alipay.android.phone.thirdparty', module: 'utdid-build'
}

Portal & Bundle

mpaascomponents {
excludeDependencies = [
 "com.alipay.android.phone.thirdparty:utdid-build"
]
}

4. Add the API package.
Baselines 10.1.68.8 and lower
If you are using the utdid-related API, download the JAR package utdid-build-1.1.5.3-
api.jar.zip, and import (compile/implementation) to the project for compilation.
Baseline 10.1.68.9 and later versions
No action is required.

Conflict description
If you are using mPaaS along with the Alipay payment SDK, there may be a library conflict in
some cases.

Solution
If you are experiencing an Alipay payment SDK conflict.

If your baseline version is 10.2.3.6 and above, please add the following configuration.

configurations {
 all*.exclude group:"com.mpaas.android.anotations", module:"anotations-build"
}

For other baseline versions, please use the following Deconflict Payments SDK version.

dependencies {
 ···
 implementation 'com.alipay.sdk.android:alipaysdk-mpaas:15.8.03.210526122749'
 ···
}

4.6. Solve conflict with
dependency on Alipay SDK

Access Android User Guide·Solve dependency
confilction

> Document Version: 20231226 88

https://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/164983/AntCloud_zh/1589351659065/utdid-build-1.1.5.3-api.jar.zip

Conflict description
As mPaaS uses wire/okio for RPC network connection, and okhttp also needs to reference
okio, so when you use mPaaS with okhttp, then there may be a wire/okio conflict.

Solution
10.1.68 Baseline
Remove wire/okio dependencies of mPaaS, and regression tested the mobile gateway
function to ensure it works correctly. The operation steps are as follows:

1. Confirm the version of wire/okio used by mPaaS.

'com.squareup.okio:okio:1.7.0@jar'
'com.squareup.wire:wire-lite-runtime:1.5.3.4@jar'

2. Get the group:artifact information for the mPaaS third-party SDK.

'com.alipay.android.phone.thirdparty:wire-build'

3. Remove the mPaaS library.
AAR method
If you are using the native AAR method to access mPaaS, the dependency passing of
gradle will automatically use a later version and there is no need to actively remove it. In
general, the version chosen for use by mPaaS is highly stable and secure, and we
recommend you to use the version provided by mPaaS. If versions are inconsistent,
please test the mPaaS function before its launch to ensure stability.
mPaaS Inside and Portal&Bundle

mpaascomponents {
excludeDependencies = ["com.alipay.android.phone.thirdparty:wire-build"]
}

4. Add back wire or okio (use wire/okio of public network. The native AAR access method is
not a concern).
As mPaaS writes dependency of both wire and okio in the
 com.alipay.android.phone.thirdparty:wire-build library, you need to add them back
optionally, as the case may be.

If there is only an okio conflict, but not a wire conflict, you need to add back the wire.

implementation 'com.squareup.wire:wire-lite-runtime:1.5.3.4@jar'

If there is only a wire conflict, but not an okio conflict, you need to add back the okio.

'com.squareup.okio:okio:1.7.0@jar'

10.2.3 Baseline
Completely remove the version dependency of mPaaS and use the version required by the
business itself. To resolve the wire/okio conflict, the operation steps are as follows:

1. Remove wire in mPaaS. Currently, mPaaS does not strongly rely on wire for now.

4.7. Solve conflict with
dependency on wire/okio

Access Android User Guide·Solve dependency
confilction

> Document Version: 20231226 89

The following operations are required in the native AAR project:

configurations {
 all*.exclude group: 'com.alipay.android.phone.thirdparty', module: 'wire-build'
}

The following operations need to be performed in the mPaaS Inside & Component (Portal
& Bundle) project:

mpaascomponents {
 excludeDependencies = [
 "com.alipay.android.phone.thirdparty:wire-build"
]
}

2. The pb class of all business party rpc inherits com.squareup.wire.Message and needs to be
changed to inherit com.mpaas.thirdparty.squareup.wire.Message .
The following component functions need to be regressed:

Mobile Gateway Service
Message Push Service
Mobile Sync Service
Manage configurations
Mobile Content Delivery Platform

Conflict description
mPaaS uses fastjson for JSON parsing, if you also use fastjson in your project, there will be a
fastjson conflict.

Solution
Remove fastjson-build from mPaaS.

Procedure
1. Confirm the current version of fastjson used by mPaaS.

'com.alibaba:fastjson:1.x.x.android@jar'

2. Get the group:artifact information for the third-party SDK used by mPaaS.

'com.alipay.android.phone.thirdparty:fastjson-build'

3. Remove the mPaaS library.
AAR method
If you are accessing mPaaS by a native AAR, there is no need to actively remove it, and
dependency passing of gradle will automatically use a later version. The version chosen
for use by mPaaS is highly stable and secure, and we recommend you to use the version
provided by mPaaS. If versions are inconsistent, please test the mPaaS function before its
launch to ensure stability.

4.8. Solve conflict with
dependency on fastjson

Access Android User Guide·Solve dependency
confilction

> Document Version: 20231226 90

Portal & Bundle

mpaascomponents {
excludeDependencies = [
 "com.alipay.android.phone.thirdparty:fastjson-build"
]
}

Android support conflict between Portal & Bundle and mPaaS
Inside accessing methods
Conflict description
mPaaS has a built-in support library based on version 23.2.1, and added Fragment aspect
logic for automated buried-points for pages. If you add the official version of the android
support library while using mPaaS, there will be an android support conflict.

Solution
Remove androidsupport-build and replace it directly with the official version. If you also need
to use the Fragment automated logging feature provided by mPaaS, you need to manually
add the monitoring logic.
Note: The native AAR method does not have a built-in support library, so you are not
required to make any action. If you also need to use the Fragment automated logging feature
provided by mPaaS, you need to manually add the monitoring logic.

Procedure
1. Confirm the version of android support currently used by mPaaS.

'com.android.support:support-v4'
'com.android.support:appcompat-v7'

2. Get the group:artifact information for the mPaaS third-party SDK.

'com.alipay.android.phone.thirdparty:androidsupport-build'
'com.alipay.android.phone.thirdparty:androidsupportrecyclerview-build'

3. Remove the mPaaS library.
AAR method
If you are accessing mPaaS by using a native AAR, you do not need to actively remove it.
mPaaS Inside and Portal & Bundle

mpaascomponents {
excludeDependencies = [
 "com.alipay.android.phone.thirdparty:androidsupport-build"
]
}

Android support conflicts in the native AAR access method

4.9. Solve conflict with
dependency on Android support

Access Android User Guide·Solve dependency
confilction

> Document Version: 20231226 91

Conflict description
The native AAR access method uses the support-v4 library based on version 23.4.0. However,
Google has changed the way it organizes its code since version 24.2.0, and no longer
provides all modules of the support-v4 library in a package, and appcompat-v7 introduces all
modules of the library in a package, see the Support library packages. Therefore, an AAR
dependency conflict will occur when your project uses the appcompat-v7 package.

Solution
Manually import a later version of support-v4, along with the appcompat-v7 you need.

Procedure
1. Manually import a later version of support-v4.

 implementation 'com.android.support:support-v4: (version you used, for example, 28.0
.0)'

2. Import appcompat-v7 you need.

 implementation 'com.android.support:appcompat-v7: (version you used, for example, 28
.0.0)'

Confilict statement
Some components of mPaaS depend on libc++_shared.so . If other third-party SDKs you
integrate also include this so, conflicts will occur.

Solutions
Removes the built-in libc++_shared.so of mPaaS.

Procedure
AAR integration mode

configurations {
 all*.exclude group:'com.mpaas.commonlib', module: 'libcshared-build'
}

Component-based (Portal & Bundle) integration method

mpaascomponents {
 excludeDependencies = [
 "com.mpaas.commonlib:libcshared-build"
]
}

4.10. Resolve libc++_shared.so
conflicts

4.11. Resolve libstlport_shared.so
conflicts

Access Android User Guide·Solve dependency
confilction

> Document Version: 20231226 92

https://developer.android.com/topic/libraries/support-library/packages#v4

Conflict statement
Some components of mPaaS depend on libstlport_shared.so . If other third-party SDKs you
integrate also include this so, conflicts will occur.

Solutions
Removes the built-in libstlport_shared.so of mPaaS.

Procedure
AAR integration mode

configurations {
 all*.exclude group:'com.alipay.android.phone.wallet', module: 'basicstl-build'
}

mPaaS component-based (Portal & Bundle) integration mode

mpaascomponents {
 excludeDependencies = [
 "com.alipay.android.phone.wallet:basicstl-build"
]
}

Conflict description
A libcrashsdk.so conflict may occur if you use a third-party SDK such as Umeng SDK while
using mPaaS.

[ERROR] :more than one file named : libcrashsdk.so in the following files
C:\Users\Administrator\.gradle\caches\modules-2\files-2.1\com.mpaas.uc.crash\uccrash-bu
ild\1.0.0.201221171651\d347c79b8091adc68c33e1ca04b702b1c85888ca\uccrash-build-1.0.0.201
221171651.jar
C:\Users\Administrator\.m2\repository\com\xinmei\etrust\bundleone\bundleone-build\1.0.0
\bundleone-build-1.0.0-raw.jar

Solution
Remove libcrashsdk.so from the UC kernel of mPaaS.

Procedure
1. Get the group:artifact information for the third-party SDK used by mPaaS.

'com.mpaas.uc.crash:uccrash-build'

2. Remove libcrashsdk from the UC kernel of mPaaS.
Native AAR integration method:

4.12. Solve conflict with
libcrashsdk.so

Access Android User Guide·Solve dependency
confilction

> Document Version: 20231226 93

configurations {
 all*.exclude group:'com.mpaas.uc.crash', module: 'uccrash-build'
}

mPaaS Inside integration method method or componentized integration method:

mpaascomponents {
 excludeDependencies = [
 "com.mpaas.uc.crash:uccrash-build"
]
}

Conflict description
A libcrashsdk.so conflict may occur if you use a third-party SDK such as Umeng SDK while
using mPaaS.

[ERROR] :more than one file named : libcrashsdk.so in the following files
C:\Users\Administrator\.gradle\caches\modules-2\files-2.1\com.mpaas.uc.crash\uccrash-bu
ild\1.0.0.201221171651\d347c79b8091adc68c33e1ca04b702b1c85888ca\uccrash-build-1.0.0.201
221171651.jar
C:\Users\Administrator\.m2\repository\com\xinmei\etrust\bundleone\bundleone-build\1.0.0
\bundleone-build-1.0.0-raw.jar

Solution
Remove libcrashsdk.so from the UC kernel of mPaaS.

Procedure
1. Get the group:artifact information for the third-party SDK used by mPaaS.

'com.mpaas.uc.crash:uccrash-build'

2. Remove libcrashsdk from the UC kernel of mPaaS.
Native AAR integration method:

configurations {
 all*.exclude group:'com.mpaas.uc.crash', module: 'uccrash-build'
}

mPaaS Inside integration method method or componentized integration method:

mpaascomponents {
 excludeDependencies = [
 "com.mpaas.uc.crash:uccrash-build"
]
}

4.13. Solve conflict with
libcrashsdk.so

Access Android User Guide·Solve dependency
confilction

> Document Version: 20231226 94

mPaaS Plugin, as a GUI-based tool, provides functions such as compiling and packaging,
dependency management, hotfix and encryption image. The mPaaS Plugin allows developers
to access mPaaS quickly and provides assistance for development. After successful
installation of mPaaS Plugin, the mPaaS menu is available on the top menu bar in Android
Studio.
The mPaaS Plugin provides various functions to assist development, including:

Menu Function

Native AAR access
Assists the access of project to
mPaaS through the native AAR
access mode.

Component-based access
Assists the access of project to
mPaaS through the component-
based access mode.

Basic tools

Hotfix Creates a patch for
components supporting hotfix.

Generate Encryption Image
(Apsara Stack Config File)

Generates the encryption
image that contains the key
information for encryption and
decryption.

Generate Signed APK

Generates a signed APK after
you input necessary
parameters for APK signing.
The signed APK is used to
obtain a configuration file on
the mPaaS console.

Generate UC Key Signing Info Generates signing information
to apply for the Key of UC SDK.

Log Diagnostic Tool
Analyzes logs in Android Studio
for quickly locating compilation
errors.

5.Developer's tools
5.1. Android Studio mPaaS plugin
5.1.1. About mPaaS plugin

Access Android User Guide·Developer's tools

> Document Version: 20231226 95

Help

Common issues
Go to Documentation Center to
check frequently asked
questions in the Android access
process.

View Documentation Go to mPaaS Document Center.

Build Builds projects.

Related topics
Install the mPaaS Plugin: describes how to install the mPaaS Plugin in Android Studio.
Use the mPaaS Plugin: describes how to use each function of the mPaaS Plugin.
Update and Uninstall the mPaaS Plugin: describes how to update and uninstall the mPaaS
Plugin.

mPaaS Plugin provides various functions to assist mobile development, such as creating an
mPaaS project, adding, deleting and updating an mPaaS component, and building a project.
This topic describes how to install the mPaaS Plugin.
The mPaaS Plugin supports two installation modes: Online installation and Offline
installation.

If you are using Android Studio 4.0 or a later version, either Online installation or Offline
installation mode can be used to install the latest mPaaS Plugin.
Find more mPaaS Plugin offline installers on mPaaS JetBrains page.

Online installation
Procedure

1. In Android Studio, select Android Studio > Preferences to open the preferences window.
If you are using a Windows operating system, select File > Settings to open the settings
dialog.

2. Click Plugins in the left pane and then click Marketplace on the top of the window.
3. Enter the keyword mPaaS to search for the mPaaS Plugin. In the search result, click the

Install button of the mPaaS Plugin to start the installation.
4. After the installation is complete, restart Android Studio and then you will see the mPaaS

menu on the menu bar.

Offline installation
Prerequisites
You have downloaded the mPaaS Plugin offline installer.

Procedure

Note
The installation package of the mPaaS plug-in is in the form of a compressed package file,
which does not need to be decompressed before installation.

5.1.2. Install mPaaS plug-in

Access Android User Guide·Developer's tools

> Document Version: 20231226 96

https://plugins.jetbrains.com/plugin/14486-mpaas/versions

1. In Android Studio, select Android Studio > Preference to open the settings dialog.

2. Click Plugins in the left pane. Then click in the upper right of the window and select
Install Plugin from Disk on the drop-down menu.

3. Select the mPaaS Plugin offline installer on your disk and click OK to start the installation.
After the installation is complete, restart Android Studio and then you can use the mPaaS
Plugin.

The GUI-based mPaaS Plugin supports quick access to mPaaS and provides functions for
convenient use.
The mPaaS Plugin provides the following functions: Native AAR Access, Componentized
Access, Basic Tools, Help and Build.

An access panel is available for the Native AAR Access and Componentized Access
functions. The access wizard on the access panel can guide you to add mPaaS to your
project through a specific access mode. After the access is complete, you can also update
the baseline and manage components on the access panel.
The mPaaS Plugin provides the following Basic Tools: Generate Encryption Image
(Apsara Stack Config File), Generate Signed APK, and Generate UC Key Signing
Info. These tools assist you to prepare necessary information for easy use of mPaaS
functions.
The mPaaS Plugin provides the following Help functions: Log Diagnostic Tool, Common
Issues, and View Documentation, to support you to troubleshoot common issues.
Build allows you to build a project after you get access to mPaaS.

Add a configuration file
The main work of the access process is to add configuration files to the project. The mPaaS
plug-in supports manual import to add configuration files. For manual import, you need to
download the configuration file in the console, and then manually add it to the project through
the mPaaS plug-in.

Manual import
The manual upload method supports Ant Technology users, Alibaba Cloud users, and Ant
Private Cloud users.

Prerequisites
You have an Alibaba Cloud account with the mPaaS service activated.
You have created an application on the mPaaS console. For more information about
application creation, see Create mPaaS application on the console.
An Android project already exists.

Procedure
1. Open the existing project in Android Studio and then click mPaaS > Native AAR Access

or Componentized Access. On the access panel, click Start Import below Import App
configuration.

2. Select I have not downloaded the configuration file and click Next.
3. Select the configuration file and click Finish. The configuration file is imported to the

project. After the process finishes, you will receive a prompt message that the configuration
file has been imported successfully.

5.1.3. Use mPaaS plug-in

Access Android User Guide·Developer's tools

> Document Version: 20231226 97

AAR access
Procedure

1. Open the existing project in Android Studio, click mPaaS > Native AAR access .
2. Import App configuration. On the access panel, click Start Import, follow manual import to

add a configuration file.

Follow-up steps
1. Add and update a baseline
2. Configure and update components

Componentized access
Procedure

1. Open the existing project in Android Studio and click mPaaS > Componentized Access.
2. Import App configuration.

On the access panel, click Start Import, follow Add a configuration file to add a
configuration file.

3. Convert the project. If the project is a native Android project, you need to convert the
project.
On the access panel, click Install mPaaS Portal . In the Install mPaaS Portal window,
select the location and configuration file of the original project and then click OK.

Follow-up steps
1. Add and update a baseline
2. Configure and update components

Add and update a baseline
Update to a common baseline
Procedure

1. Click mPaaS > Native AAR Access or Componentized Access to open the access
panel. Then click Start Config below Access/update the baseline.

2. Select the baseline version to be updated and click OK. After the update is complete, a
success message is displayed.

Follow-up steps
Click the updated baseline on the access panel. You will see the baseline version in the
baseline selection window.

Update to a custom baseline
We provide baselines specific to all customers, such as 10.1.32, 10.1.60 and 10.1.68. If you
need custom mPaaS functions, you can contact our staff and make a request. We will
customize baselines for you as demanded. mPaaS staff will deliver the ID of your custom
baseline. You can obtain the custom baseline after you enter this ID in the mPaaS Plugin.

Prerequisites
mPaaS V2.19111217 or later version is required in Android Studio. See Update the mPaaS
Plugin to check the current mPaaS Plugin version and learn how to update the mPaaS Plugin.

Procedure

Access Android User Guide·Developer's tools

> Document Version: 20231226 98

1. Delete the mpaas_package.json file of the project in Android Studio.
2. Click mPaaS > Native AAR Access or Component-Based Access to open the access

panel. Then click Start Config below Add and update baseline.
3. In the baseline update dialog, select Custom baseline and enter the custom baseline ID.
4. Click OK. The custom baseline is added.

Configure and update components
mPaaS component management (AAR)
Prerequisites
You have updated the baseline.

Procedure
1. Click mPaaS > Native AAR Access to open the access panel. Then click Start

configuration below Configure and update components.
2. In the displayed management window, click mPaaS Component Management . Then

select the module and components to be managed and click OK. If your project contains
multiple modules, you can select individual modules and select components for each
module respectively.

3. After the components are added, click OK.

Component Management
Procedure

1. Click mPaaS > Component-Based Access to open the access panel. Then click Start
Config below Configure and update components.

2. In the displayed component management window, click the corresponding buttons to install
the required components.

Basic tools
Basic Tools provide the following functions: Generate Encryption Image (Apsara Stack
Config File), Generate Signed APK, and Generate UC Key Signing Info .

Generate the encryption image (Apsara Stack configuration
file)
When some components of the mPaaS Plug-in get access to the network, the contents must
be encrypted to ensure security.

The image named as yw_1222.jpg provides a secret key for encryption and decryption.
The components of mPaaS Plugin automatically use this image for encryption and
decryption.
Since this encrypted image has been deprecated in public cloud environments, public cloud
users can ignore this section.

The following describes how to generate and use the encryption image yw_1222.jpg .

Preparations
The encrypted image is bound with the APK signature file. Therefore, you need to prepare the
signed APK of your Portal project. For detailed signing instructions, see Android official
website: Sign your app.

Access Android User Guide·Developer's tools

> Document Version: 20231226 99

https://developer.android.com/studio/publish/app-signing

Note
This APK uses the same signature file as the Release Version APK.
The generated encrypted image can only be used in this APK project.

Generation
You can use mPaaS Plugin to generate the encryption image.

1. In Android Studio, click mPaaS > Basic Tools > Generate Encryption Image (Apsara
Stack Config File).

2. In Release Apk, select the signed APK of the Portal project. The RSA field is automatically
filled.

3. In mPaaS Config File , select the .config file of the Portal project. The workSpaceId,
appId and packageName fields are automatically filled. If these fields are not
automatically filled, enter the corresponding configurations according to the contents in the
 .config file of the project.

4. Fill the appsecret field.

Note
As the server administrator, you can query the corresponding appsecret of appid on
the console.

5. In the jpg Version field, enter the version number of the security guard image.

Note
Check the securityguard version in the build.gradle file under the main module
of the Portal project. Enter 4 if the version is lower than 5.4 (such as securityguard-
build:5.1.38.180402194514 in the baseline). Otherwise, enter 5.

6. In outPath, select an output path for the security guard image yw_1222.jpg . The
generated encryption image will be stored under this local path.

7. Click OK to generate the encryption image.

Usage
The following describes how to use the encryption image:

1. Store the encryption image yw_1222.jpg in the res/drawable folder of the Portal
project.

2. If ProGuard is used, you need to avoid confusion of the encryption image.
i. Check whether build.gradle contains the following configurations:

minifyEnabled true
shrinkResources true

If yes, you need to create a keep.xml file under res/raw to avoid confusion of the

Access Android User Guide·Developer's tools

> Document Version: 20231226 100

https://developer.android.com/studio/build/shrink-code?hl=zh-cn#keep-resources

ii. If yes, you need to create a keep.xml file under res/raw to avoid confusion of the
encryption image. The file content is as follows:

<?xml version="1.0" encoding="utf-8"?>
<resources xmlns:tools="http://schemas.android.com/tools"
tools:keep="@drawable/yw_1222*" /><!--tools:discard="@layout/unused2"-->

Generate signed APK
When you attempt to obtain the configuration file on the mPaaS console, you need to upload
a signed APK file. The procedure will be suspended if you have not created a project or
compiled the signed APK. The mPaaS Plugin provides the function Generate Signed APK to
simplify this procedure in Android Studio. This function can generate a signed APK after you
input necessary parameters for APK signing.

Generation
1. Click mPaaS > Basic tools > Generate Signed APK used in Console to open the Build

Signed APK page.
2. In the Build Signed APK page, enter the required configuration information.
3. Click OK The signed APK is generated.
4. Click Reveal in Finder You can find the generated APK file. The file name is mpaas-

signed.apk . The generation of signed APK is complete.
Open the APK file. You can find the file is small and has been signed.

Help
Log diagnostic tool

1. Click mPaaS > Help > Log Diagnostic Tool.
2. Copy and paste the log to be analyzed in the text box and click Next.
3. Wait until the analysis is completed.
4. View the analysis result.

The analysis result contains Cause and Solution. You can modify your codes according to
the cause and solution if any issue is found.

5. After the modification, click Finish to close the window.

FAQ
Click mPaaS > Help > Common Issues to go to Common Android access issues. You can
check common issues that you may encounter when you access Android.

View document
Click mPaaS > Help > View documents to go to mPaaS Document Center. You can view
the documents of all components.

Build
In Android Studio, select mPaaS > Build. Then you can build your project.

This topic describes how to update and uninstall the mPaaS Plugin.
The images in this document are specific to a Windows operating system. The operation
procedures are similar in macOS and Linux.

5.1.4. Update and uninstall mPaaS plug-in

Access Android User Guide·Developer's tools

> Document Version: 20231226 101

Update the mPaaS Plugin
1. Open Android Studio and click File > Settings.
2. In the Settings dialog, select Plugins in the left navigation pane.
3. In the left pane, click the Updates tab, search for the mPaaS Plugin and, and then click

Update on the right of the mPaaS Plugin in the search result.
4. Click Accept when the Privacy Policy of the third-party plugin is displayed.
5. Android Studio will download the mPaaS Plugin automatically.
6. After the update is complete, click Restart IDE. In the confirmation dialog, click Restart to

restart Android Studio.
7. After the restart of Android Studio, select File > Settings > Plugins. You can see the

mPaaS plugin has been updated to the latest version.

Uninstall the mPaaS Plugin
1. Open Android Studio and click File > Settings.
2. In the Settings dialog, select Plugins in the left navigation pane.
3. Click the Installed tab on the top of the right pane, and search for the mPaaS Plugin. In the

search result, click the mPaaS Plugin to open the details page.
4. On the mPaaS Plugin details page, click the Disable drop-down box in the upper right

corner and then select Uninstall.
5. In the confirmation dialog, click Yes to uninstall the mPaaS Plugin.

Access Android User Guide·Developer's tools

> Document Version: 20231226 102

This article describes the adaptation work that users need to do for Android 12 when using
the mPaaS 10.1.68 version baseline.
Google has released Android 12 on October 4, 2021. As a basic library, mPaaS has been
adapted on the 10.1.68 baseline. 10.1.68.37 and later versions have completed the
adaptation to Android 12. Prior to the mPaaS adaptation, the mPaaS SDK was affected on
Android 12 devices that the HTML5 container could not launch the UC kernel.

Upgrade the SDK or components
Use the mPaaS plug-in to upgrade the mPaaS SDK or components.

If the baseline version used is already 10.1.68, simply upgrade to the latest version. See
10.1.68 release notes.
If you are using baseline version 10.1.60 or earlier versions, upgrade to 10.1.68 and update
to the latest version. There are no plans to adapt Android 12 to mPaaS 10.1.60 and earlier
versions at this time.

Start UC kernel
On the Android 12 system, you need to use a specific version of the UC kernel, and add
configuration to turn on the UC kernel. Without the following adaptations, the H5 container
will enable the system WebView by default on the Android 12 system.

Use specific version of UC kernel
Add dependencies under the dependencies node in the build.gradle of the main module
(in the Portal project under the Portal&Bundle access method).

implementation('com.alipay.android.phone.wallet:nebulaucsdk-
build:3.22.2.18.210803145558@aar') {
 force = true
}

When using Protal&Bundle access methods, you also need to remove the original UC core in
the SDK, and add the following content to the build.gradle of the main module
(Protal&Bundle access method is in the Portal project):

mpaascomponents {
 excludeDependencies = [
 "com.alipay.android.phone.wallet:nebulaucsdk-build"
]
}

Add configuration to enable UC kernel on Android 12
Create a custom_config.json file under the config directory in assets and add the
following content to the file.

6.Adapt to Android
6.1. Adapt to Android 12

Access Android User Guide·Adapt to Android

> Document Version: 20231226 103

[
 {
 "value":"{\"h5_enableExternalWebView\":\"YES\",\"h5_externalWebViewSdkVersion\":{\"
min\":11,\"max\":31}}",
 "key":"h5_webViewConfig"
 }
]

Perform regression Test
Upgrading the UC kernel may be accompanied by changes in some browser features. Please
perform regression tests on the related services using UC browsers.

Process custom library
Each component of version 10.1.68 has incorporated customized requirements. If your
dependencies include customized libraries, you need to deal with the following conditions:

If you are upgrading from a lower version of the SDK (such as 10.1.60) to version 10.1.68,
your custom library may need to be re-customized based on the new version, please search
for group number 41708565 with DingTalk to join DingTalk group to contact mPaaS support
staff to confirm.
If you are already using version 10.1.68, you only need to update some components. See
Adaptable library list for Android 12 updates below to check whether your custom libraries
are included in it.

If not included, you can continue to use the custom library.
If included, your custom library may need to be re-customized, please search for group
number 41708565 with DingTalk to join DingTalk group to contact mPaaS support.

Adaptable library list for Android 12 updates
nebulauc
multimediabiz

Google has officially released Android 11 on September 9, 2020, and mPaaS has been
adapted on the 10.1.68 baseline.

Background
Google has officially released Android 11 on September 9, 2020, and mPaaS has been
adapted on the 10.1.68 baseline.
Prior to the mPaaS adaptation, the mPaaS SDK was affected on Android 11 devices that the
HTML5 container could not launch the UC kernel .
Important: As the base library, mPaas has been adapted for Android 11 for the current
version 10.1.68.14 and later versions.

Upgrade the SDK or components
Use the mPaaS plug-in to upgrade the mPaaS SDK or components.

If the baseline version used is already 10.1.68, simply upgrade to the latest version. See
10.1.68 release notes.
If you are using baseline version 10.1.60 or earlier versions, upgrade to 10.1.68 and update
to the latest version. There are no plans to adapt Android 11 to mPaaS 10.1.60 and earlier
versions at this time.

6.2. Adapt to Android 11

Access Android User Guide·Adapt to Android

> Document Version: 20231226 104

Handle custom libraries
The components in version 10.1.68 incorporate customization requirements. However, if your
dependencies include custom libraries, you must take the following actions to handle them
accordingly for security reasons.

If you upgraded the SDK from an earlier version (for example, 10.1.60) to 10.1.32, you may
need to customize custom libraries again based on the new version. To do this, search for
group number 41708565 with DingTalk to join DingTalk group to contact mPaaS technical
support personnel for confirmation.
If the SDK version is 10.1.68, only a part of the components need to be updated. See the
following Adaptable library list for Android 11 updates to check if your custom library is
included.

If no, you can continue to use these custom libraries.
If yes, you may need to customize them again. To do this, search for group number
41708565 with DingTalk to join DingTalk group to contact mPaaS technical support
personnel.

Adaptable library list for Android 11 updates
nebulaappproxy
nebulauc

In the mPaaS standard baseline, the dynamic libraries (.so files) used in the SDK support
the armeabi architecture only. However, some users also need support for other CPU
architectures, such as the armeabi-v7a architecture, or the arm64-v8a architecture for apps
on Google Play. Since 10.1.68.21, mPaaS has provided support for armeabi-v7a and arm64-
v8a architectures. If your application needs to support architectures other than armeabi,
please use the mPaaS plug-in to update the SDK to version 10.1.68.21 or later versions, and
update the SDK described as follows and return to the relevant function.
If your app does not need to support architectures other than armeabi, you can still update
the SDK to version 10.1.68.21 or later versions, and don’t have to make any modification.

Update configurations
Overall compatibility

Support AAR and Portal&Bundle accessing methods.
Support armeabi, armeabi-v7a, and arm64-v8a architectures.
Support targetSdkVersion 26 - 29
Support Android 11.

Release app on Google Play
If your app needs to be released on Google Play and use the location component of mPaaS or
the map function in the mini program, you need to remove the AMAP SDK built in mPaaS and
use AMAP’s official version that can be approved by Google. Modify with reference to the
following instructions:

Use official AMAP positioning SDK
Use official AMAP map SDK

6.3. Adapt to multi-CPU
architecture

Access Android User Guide·Adapt to Android

> Document Version: 20231226 105

Update Gradle configurations
Native AAR
Update Gradle version. We recommend version 6.2 and the earliest supported version is 5.0.
If the latest version fails to compile, use the recommended version 6.2.

distributionUrl=https\://services.gradle.org/distributions/gradle-6.2-all.zip

Portal&Bundle
Update Gradle version. We recommend version 6.2 and the earliest supported version is 5.0.
If the latest version fails to compile, use the recommended version 6.2.

distributionUrl=https\://services.gradle.org/distributions/gradle-6.2-all.zip

Update agp version:
For Portal&Bundle access mode, modify it in the root directory build.gradle of the Portal
project and all Bundle projects.

classpath 'com.alipay.android:android-gradle-plugin:3.5.14'
classpath 'com.android.tools.build:gradle:3.5.3' // 3.5.0 earliest

Generate APK
Set CPU architecture

For Native AAR mode, set the architecture in the build.gradle of the main project
module.
For Portal&Bundle access mode, set it in the build.gradle of the main module of the
portal project if apk is generated, or in the build.gradle of the main module of the
bundle project if the bundle is generated.

Set up abiFilters natively as follows:

ndk {
 abiFilters "armeabi", "armeabi-v7a", "arm64-v8a"
}

Compile
Compile as normal, without any modification.

Regression test
You need to make full regression testing for different architectures of the APK separately. In
the regression test, you should focus on the following component functions (if used):

Components Test items

Access Android User Guide·Adapt to Android

> Document Version: 20231226 106

Mobile Gateway Service

Whether the RPC call succeeds after signature
validation is enabled.
Whether the RPC call succeeds after date
encryption is enabled.

Code Scanner

Whether the standard UI scans the code
successfully.
Whether the standard UI opens the phone
album, takes photos and previews properly
If the custom UI is successful, you need to
adapt part of the new API.

Datacenter
Whether Database encrypted storage functions
well.
Whether File encrypted storage functions well.

Social Sharing Whether Sina Weibo and QQ sharing functions
well.

OCR OCR identifies whether the relevant content is
normal or not.

Audio and video Whether the audio and video call function is
normal.

The primary baseline of mPaaS supports targetSdkVersion 29 and earlier. If your application
requires targetSdkVersion 30, use mPaaS plug-in to upgrade the SDK to the custom baseline
 10.2.3 and then perform adaptation and regression as shown in the following steps.

Prerequisites
The mPaaS is adapted to targetSdkVersion 28 and 29. For more information, see Adapt
mPaaS to targetSdkVersion 28 and Adapt mPaaS to targetSdkVersion 29.

Procedure
1. Change the value of the targetSdkVersion attribute.

In the native AAR access modes
Open the build.gradle file in the main module of the project and change the value of the
targetSdkVersion attribute to 30.
In the Portal and Bundle access mode
Open the build.gradle file in the main module of the Portal project and change the value
of the targetSdkVersion attribute to 30. In the Bundle project, the value of the
targetSdkVersion attribute can retain unchanged, but the value of the targetSdkVersion
attribute must be less than or equal to that in the Portal project.

6.4. Adapt mPaaS to
targetSdkVersion 30

Access Android User Guide·Adapt to Android

> Document Version: 20231226 107

2. Specify general configurations.
Open the build.gradle file in the main module of the project and explicitly enable v2 and v1
signing. Note that in the Portal and Bundle access mode, the project name is Portal.

 android {
 ...
 signingConfigs {
 release {
 storeFile file("myreleasekey.keystore")
 storePassword "password"
 keyAlias "MyReleaseKey"
 keyPassword "password"
 v2SigningEnabled true // Enable v2 signing.
 v1SigningEnabled true // Enable v1 signing.
 }
 }
 }

3. (Optional) Use the video playback feature of the Mini Program.
If you need to use the video playback feature of the Mini Program you connect to and your
application needs to support the 64-bit CPU architecture, modify the AndroidManifest.xml
file in the main project and add the following attribute to the "application" node:

android:allowNativeHeapPointerTagging="false"

4. Perform a regression test.
Ensure that Android 11 or later devices are included in the full regression test.
In the regression test, focus on the components and their features, if in use, shown in the
following table.

Component Test Item

HTML5 Container Check whether the offline package can be properly downloaded
and used for upgrades.

Mobile Analysis Service (MAS) Check whether all types of monitoring logs can be properly
written to local devices and reported.

Mini Program

Check whether Mini Program packages can be properly
downloaded and used for upgrades.
Check whether the photo API is normal.
Check whether the video playback and recording APIs are normal.
Check whether the map API is normal.

OCR Check whether the OCR feature is normal.

Location Based Service (LBS) Check whether the LBS feature is normal.

Access Android User Guide·Adapt to Android

> Document Version: 20231226 108

Social Sharing Check whether the content can be shared to the supported
platforms.

Device ID Check whether the device ID feature is normal.

The former mPaaS standard baseline only supports up to 26 for targetSdkVersion. However,
The support to targetSdkVersion is added since 10.1.68.21. If your app needs to upgrade
targetSdkVersion to 29, refer to Use mPaaS plug-in to update the SDK to 10.1.68.21 or later,
and add configuration according to the following description and return to the relevant
function.

Update SDK
Update the SDK and related configuration with reference to mPaaS supports for multi-CPU
architecture.

Adapt targetSdkVersion 29
Prerequisites
Adapt targetSdkVersion 28 with reference to Adaptation of targetSdkVersion 28 to mPaaS

Modify targetSdkVersion
AAR
Modify the attribute targetSdkVersion 29 in the build.gradle file under the main module of
the project.

Portal&Bundle
Modify the attribute targetSdkVersion 29 in the build.gradle file under the main module
of the Portal project.
The targetSdkVersion in the Bundle project may be left unchanged, but may not be later
than that of the Portal project.

Universal configurations
Modify the project AndroidManifest.xml and add the following attributes under the
application node:

<application
 android:requestLegacyExternalStorage="true"
 ... >

The backend uses location function
If your app needs to use the location function while in the backend, you need to add and
request the following permissions:

Add the following permissions to AndroidManifest.xml :

<uses-permission android:name="android.permission.ACCESS_BACKGROUND_LOCATION" />

Ensure that the permission is dynamically requested before calling the locator API:

6.5. Adapt to targetsdkversion 29

Access Android User Guide·Adapt to Android

> Document Version: 20231226 109

String[] permissions;
if (android.os.Build.VERSION.SDK_INT >= android.os.Build.VERSION_CODES.Q) {
 permissions = new String[]{
 Manifest.permission.ACCESS_FINE_LOCATION,
 Manifest.permission.ACCESS_COARSE_LOCATION,
 Manifest.permission.ACCESS_BACKGROUND_LOCATION
 };
} else {
 permissions = new String[]{
 Manifest.permission.ACCESS_FINE_LOCATION,
 Manifest.permission.ACCESS_COARSE_LOCATION
 };
}
ActivityCompat.requestPermissions(this, permissions, 101);

Use the Bluetooth function of the mini program
If your app needs to use Bluetooth-related APIs in the mini program, you need to add and
request the following permissions.

Add the following permissions to AndroidManifest.xml :

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

Ensure that the permission has been requested before calling the Bluetooth API:

String[] permissions = new String[]{
 Manifest.permission.ACCESS_FINE_LOCATION,
 };
ActivityCompat.requestPermissions(this, permissions, 101);

Regression test
Android 10.0+ devices must be included in the full regression test.
For regression test, you need to focus on the following component functions, if used:

Components Validation project

Unified data storage - Whether Database encrypted storage functions
well.

Mobile Analytics Service - Whether the lag monitoring of Mobile Analytics
Service functions well.

Mini programs

- Whether Mini program file API functions well.
- Whether Mini program Bluetooth API functions
well.
- Whether the map component of the mini
program functions well.

Locating - Whether Locatingfunctions well.

Access Android User Guide·Adapt to Android

> Document Version: 20231226 110

The former mPaaS standard baseline only supports up to 26 for targetSdkVersion. However,
The support to targetSdkVersion is added since 10.1.68.21. If your app needs to upgrade
targetSdkVersion to 29, refer to Use mPaaS plug-in to update the SDK to 10.1.68.21 or later,
and add configuration according to the following description and return to the relevant
function.
Update the SDK and related configuration with reference to mPaaS supports for multi-CPU
architecture.

Adapt targetSdkVersion 28
Modify targetSdkVersion
AAR
Modify the attribute targetSdkVersion 28 in the build.gradle file under the main module of
the project.

Portal&Bundle
Modify the attribute targetSdkVersion 28 in the build.gradle file under the main module
of the Portal project.
The targetSdkVersion in the Bundle project may be left unchanged, but may not be later
than that of the Portal project.

Universal configurations
AAR
Modify the project AndroidManifest.xml and add the following codes under the application
node:

<uses-library android:name="org.apache.http.legacy" android:required="false"/>

Portal&Bundle
Modify the Portal project AndroidManifest.xml :

Add the following codes under the application node:

<uses-library android:name="org.apache.http.legacy" android:required="false"/>

Note that SDK has been changed to set through code. You need to remove the following
attributes from the LauncherActivity:

android:screenOrientation="portrait"

Other configurations
Allow HTTP requests
By default, the Android 9.0 network configuration disables HTTP requests and only allows
HTTPS requests. Set targetSdkVersion 28 to enable the 9.0 network configuration on 9.0+
devices. If you still need to send HTTP requests, including in mini programs, you can enable it
by configuring networkSecurityConfig.

Note that Portal & Bundle is a Portal project. Create a network_security_config.xml file
under the res/xml directory of the project with the following contents:

6.6. Adapt to targetsdkversion 28

Access Android User Guide·Adapt to Android

> Document Version: 20231226 111

<?xml version="1.0" encoding="utf-8"?>
<network-security-config>
 <base-config cleartextTrafficPermitted="true">
 <trust-anchors>
 <certificates src="system" />
 </trust-anchors>
 </base-config>
</network-security-config>

Note that Portal & Bundle is a Portal project. Add the following attributes to the application
node in AndroidManifest.xml of the project:

android:networkSecurityConfig="@xml/network_security_config"

For more information about the configuration, please refer to the Official google
documentation.

Crash occurs when setting screen orientation with transparent
background Activity
This adaptation point is an Android 8.0 bug. On Android 8.0 devices, when the application
targetSdkVersion > 26, opening an Activity with a transparent background will trigger a crash
if the screen orientation is set. The specific trigger conditions are:

The attribute of windowIsTranslucent or windowIsFloating of the theme used by the
Activity is true.
The screenOrientation attribute is set in AndroidManifest.xml , or the
 setRequestedOrientation method is called.

You need to check if all Activities meet the trigger conditions, and note that in addition to
your custom style, some common system themes also meet the conditions, for example:

@android:style/Theme.Translucent.NoTitleBar
@android:style/Theme.Dialog

Recommended adaptation:
1. For the Activity whose theme meets the condition, delete the screenOrientation attribute

in AndroidManifest.xml and call the setRequestedOrientation method instead.

2. Override the setRequestedOrientation method in the corresponding Activity or parent
class, with try catch super.setRequestedOrientation() as the ground rule:

@Override
 public void setRequestedOrientation(int requestedOrientation) {
 try {
 super.setRequestedOrientation(requestedOrientation);
 } catch (Exception ignore) {

 }
 }

3. BaseActivity , BaseFragmentActivity , and BaseAppCompatActivtiy provided by mPaaS
were overwritten, with setRequestedOrientation method as the ground rule.

Access Android User Guide·Adapt to Android

> Document Version: 20231226 112

https://developer.android.com/training/articles/security-config.html#base-config

4. Make sure that your Activity does not have any exceptions due to screen rotation as this
may prevent crashes but may still cause lock orientation to fail on Android 8.0 devices. For
example, re-running the lifecycle will result in some member variables being empty.

Source code related to Android 8.0 system:

Regression test
The full regression test must include Android 9.0+ devices. For crash issue in Activity setting
screen orientation against the transparent background, make specific tests on Android 8.0
models.
For regression test, you need to focus on the following component functions, if used:

Components Validation project

Mobile gateway

- Whether the RPC call succeeds after enabling
Signature validation.
- Whether the RPC call succeeds after enabling
Data encryption.

Scan

- Whether the standard UI scans the code
successfully.
- Whether the standard UI opens the phone
album, takes photos and previews properly.
- If the custom UI is successful, you need to adapt
part of the new API.

Access Android User Guide·Adapt to Android

> Document Version: 20231226 113

Unified data storage
- Whether Database encrypted storage functions
well.
- Whether File encrypted storage functions well.

Share - Whether Share on Sina Weibo and/or QQ
functions well.

Access Android User Guide·Adapt to Android

> Document Version: 20231226 114

Before proceeding with client-side development, you will first need to configure your
development environment:

Configure the Windows development environment
Configure the macOS development environment
Configure the Linux development environment

Configure the Windows development environment
Configure the Windows development environment with reference to the following
instructions.

Configure Java 8 environment
mPaaS framework only supports JDK 8 and later :

1. Download and install JDK 8.
2. Configure the JAVA_HOME environment variable and add the bin path under JAVA_HOME

to the PATH environment variable.
3. Once properly configured, run the java -version command from the command line and

you will view the JDK version and other information.

Configure Gradle 4.4 environment
mPaaS framework only supports Gradle 4.4.

Use Gradle Wrapper (recommended)
If your project was originally built with Gradle Wrapper, we recommend you to change the
version number to 4.4 in the project directory /gradle/wrapper/gradle.properties .
If your project does not use Gradle Wrapper, we recommend you to use the global Gradle
version 4.4 and then call gradle wrapper --gradle-version=4.4 to install a gradle
wrapper. After these steps, you only need to use ./gradlew in a way that minimizes the
impact on your development environment.

Use an independent gradle
1. Download .
2. Unzip the .zip package, then configure the unzip path to the GRADLE_HOME

environment variable, and add the bin path under GRADLE_HOME to the PATH
environment variable.

3. Once properly configured, run the gradle -v command from the command line and you
will view the Gradle version and other information.

Install and configure Android Studio
Install Android Studio
The latest mPaaS plug-in only supports Android Studio of version 4.0 and later versions.

7.Reference
7.1. Environment configuration
under componentized access mode

Access Android User Guide·Reference

> Document Version: 20231226 115

https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

For the information about downloading Android Studio, see Android Developers.
Installation guide.
If you were using an earlier version of Android Studio and already had the mPaaS plug-in
installed, then after you upgrade from an earlier version of Android Studio to 4.0 or later
versions you will only need to upgrade the mPaaS plug-in to the latest version. For more
details, see Upgrade mPaaS plug-ins.
If you need to support the mPaaS plug-in for Android Studio earlier than version 4.0, install
it as an offline installer after downloading the offline installer. For more instructions on
offline installation, please refer to the offline installation of mPaaS plug-in.

Install Android SDK
You need to install the Android SDK with API Level 19 and 26.

1. In Android Studio, open the Settings dialog through File > Settings.
2. Check the SDKs with API Level 19 and 26 in the Android SDK dialog box , and click the

Apply button to install.

Install mPaaS plug-in
More information on the installation of mPaaS plug-in, please refer to the Installation of
mPaaS plug-in

Configure the Gradle build tool
You need to make sure that the project is built with Gradle Wrapper:

1. In Android Studio, open the Settings dialog through File > Settings.
2. Check the Use default gradle wrapper in the Gradle dialog box, and click the Apply

button.

Configure the macOS development environment

Access Android User Guide·Reference

> Document Version: 20231226 116

https://developer.android.com/studio
https://developer.android.com/studio/install?#windows

Configure the macOS development environment according to the following description.

Configure Java 8 environment
mPaaS framework only supports JDK 8+:

1. Download and install JDK 8.
2. Configure the JAVA_HOME environment variable and add the bin path under JAVA_HOME

to the PATH environment variable.
3. Once properly configured, run the java -version command from the command line and

you will view the JDK version and other information.

Configure Gradle 4.4 environment
mPaaS framework only supports Gradle 4.4.

Use Gradle Wrapper (recommended)
If your project was originally built with Gradle Wrapper, we recommend you to change the
version number to 4.4 in the project directory /gradle/wrapper/gradle.properties .
If your project does not use Gradle Wrapper, we recommend you to use the global Gradle
version 4.4 and then call gradle wrapper --gradle-version=4.4 to install a gradle
wrapper. After these steps, you only need to use ./gradlew in a way that minimizes the
impact on your development environment.

Use an independent gradle
1. Download .
2. Unzip the .zip package, then configure the unzip path to the GRADLE_HOME

environment variable, and add the bin path under GRADLE_HOME to the PATH
environment variable.

3. Once properly configured, run the gradle -v command from the command line and you
will view the Gradle version and other information.

Install and configure Android Studio
Install Android Studio
The latest mPaaS plug-in only supports Android Studio of version 4.0 and later versions.

For the information about downloading Android Studio, see Android Developers.
Installation guide.
If you were using an earlier version of Android Studio and already had the mPaaS plug-in
installed, then after you upgrade from an earlier version of Android Studio to 4.0 or later
versions you will only need to upgrade the mPaaS plug-in to the latest version. For more
details, see Upgrade mPaaS plug-ins.
If you need to support the mPaaS plug-in for Android Studio earlier than version 4.0, install
it as an offline installer after downloading the offline installer. For more instructions on
offline installation, please refer to the offline installation of mPaaS plug-in.

Install Android SDK
You need to install the Android SDK with API Level 19 and 26.

1. Open the Settings dialog box through Android Studio > Preferences in Android Studio.
2. Check the SDKs with API Level 19 and 26 in the Android SDK dialog box , and click the

Apply button to install.

Install mPaaS plug-in

Access Android User Guide·Reference

> Document Version: 20231226 117

https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://developer.android.com/studio
https://developer.android.com/studio/install?#mac

More information on the installation of mPaaS plug-in, please refer to the Installation of
mPaaS plug-in

Configure the Gradle build tool
You need to make sure that the project is built with Gradle Wrapper:

1. Open a random Andriod project in Android Studio.
2. Open the Setting dialog box.
3. Check the Use default gradle wrapper in the Gradle dialog box, and click the Apply.

Configure the Linux development environment
Configure the Linux development environment according to the following description.

Note
This text is applicable to CentOS and Ubuntu versions only, as there are too many
versions of Linux OS.

Configure Java 8 environment
mPaaS framework only supports JDK 8+:

1. Download and install JDK 8.
2. Configure the JAVA_HOME environment variable and add the bin path under JAVA_HOME

to the PATH environment variable.
3. Once properly configured, run the java -version command from the command line and

you will view the JDK version and other information.

Configure Gradle 4.4 environment
mPaaS framework only supports Gradle 4.4.

Use Gradle Wrapper (recommended)
If your project was originally built with Gradle Wrapper, we recommend you to change the
version number to 4.4 in the project directory /gradle/wrapper/gradle.properties .
If your project does not use Gradle Wrapper, we recommend you to use the global Gradle
version 4.4 and then call gradle wrapper --gradle-version=4.4 to install a gradle
wrapper. After these steps, you only need to use ./gradlew in a way that minimizes the
impact on your development environment.

Use an independent gradle
1. Download .
2. Unzip the .zip package, then configure the unzip path to the GRADLE_HOME

environment variable, and add the bin path under GRADLE_HOME to the PATH
environment variable.

3. Once properly configured, run the gradle -v command from the command line and you
will view the Gradle version and other information.

Install 32-bit compatible library
By default, ia32-lib is removed for the release versions of Linux such as CentOS 6, CentOS
7, and Ubuntu. All 64-bit Linux systems must be installed with 32-bit compatible libraries.
Refer to the installation method of android-sdk:

Access Android User Guide·Reference

> Document Version: 20231226 118

https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://code.google.com/archive/p/android-sdk/

Ubuntu:
sudo apt-get install zlib1g:i386

CentOS:
yum install libstdc++.i686

Install and configure Android Studio
Install Android Studio
The latest mPaaS plug-in only supports Android Studio of version 4.0 and later versions.

For the information about downloading Android Studio, see Android Developers.
Installation guide.
If you were using an earlier version of Android Studio and already had the mPaaS plug-in
installed, then after you upgrade from an earlier version of Android Studio to 4.0 or later
versions you will only need to upgrade the mPaaS plug-in to the latest version. For more
details, see Upgrade mPaaS plug-ins.
If you need to support the mPaaS plug-in for Android Studio earlier than version 4.0, install
it as an offline installer after downloading the offline installer. For more instructions on
offline installation, please refer to the offline installation of mPaaS plug-in.

Install Android SDK
You need to install the Android SDK with API Level 19 and 26.

1. In Android Studio, open the Settings dialog through File > Settings.
2. Check the SDKs with API Level 19 and 26 in the Android SDK dialog box , and click the

Apply button to install.

Install mPaaS plug-in
More information on the installation of mPaaS plug-in, please refer to the Installation of
mPaaS plug-in.

Configure the Gradle build tool
You need to make sure that the project is built with Gradle Wrapper:

1. Open a random Andriod project in Android Studio.
2. Open the Setting dialog box.
3. Check the Use default gradle wrapper in the Gradle dialog box, and click the Apply

button.

During app development, the app environment (namely, workspace) may occasionally
change, and the app may be developed in multiple workspaces in parallel.
mPaaS provides a tool for you to conveniently switch among workspaces during
development. There are two types of workspace switching modes:

Static workspace switching
Dynamic workspace switching

Static workspace switching
Prerequisites

7.2. Switch workspace

Access Android User Guide·Reference

> Document Version: 20231226 119

https://developer.android.com/studio
https://developer.android.com/studio/install?#Linux

You have an App developed based on the mPaaS framework . For more information, see
mPaaS Based Framework > Quick Start.
When performing static workspace switching, easyconfig is used. easyconfig working
principle:

Modify meta properties related to AndroidManifest workspace .
Modify the mpaas.properties file under assets .
If the configuration file of the mPaaS project contains the base64 property which is not
null, a Security Guard encrypted picture yw_1222.jpg is generated.

Public cloud
In a public cloud, perform the following steps to switch the workspace:

1. Ensure that the following dependency exists in the build.gradle file under the root
directory of the project:

Note
The following dependency version number may increase constantly due to function
iterations.

 classpath 'com.alipay.android:android-gradle-plugin:3.0.0.9.13'
 // Set a version number that is no earlier than 2.8.0.
 classpath 'com.android.boost.easyconfig:easyconfig:2.8.0'

2. Ensure that the following configuration (sequence to be observed) exists in build.gradle
of the main project (android main module).

 apply plugin: 'com.alipay.portal'
 // Append it to com.alipay.portal
 apply plugin: 'com.alipay.apollo.baseline.update'

3. Download the .config configuration file of the corresponding workspace from the
console. For more information, see Create Application in Console > Download Configuration
File.

4. Add the downloaded .config configuration file to the path of the main project (android
main module). See the figure below.

Important
Keep only the configuration file of the corresponding workspace.

Access Android User Guide·Reference

> Document Version: 20231226 120

Apsara Stack
In a private cloud, perform the following steps to switch the workspace:

1. Ensure that the following dependency exists in the build.gradle file under the root
directory of the project.

Note
The following dependency version number may increase constantly due to function
iterations.

 classpath 'com.alipay.android:android-gradle-plugin:3.0.0.9.13'
 // Set a version number that is no earlier than 2.8.0.
 classpath 'com.android.boost.easyconfig:easyconfig:2.8.0'

2. Ensure that the following configuration (the order must be followed) exists in
 build.gradle of the main project (android main module).

apply plugin: 'com.alipay.portal'
 // Append it to com.alipay.portal
 apply plugin: 'com.alipay.apollo.baseline.update'

Access Android User Guide·Reference

> Document Version: 20231226 121

3. Download the .config configuration file of the corresponding workspace from the
console. For more information, see Create an application in console > Download
configuration files.

4. Add the downloaded .config configuration file to the path of the main project (android
main module). See the figure below.

Important
Keep only the configuration file of the corresponding workspace.

5. Use the mPaaS plug-in to generate an encrypted image yw_1222.jpg . For more
information, see Generate an encrypted image (Apsara Stack).

Dynamic workspace switching
In dynamic workspace switching, workspace options in mobile phone settings are modified to
dynamically modify the app workspace information without repackaging on the client.

Access Android User Guide·Reference

> Document Version: 20231226 122

Note
The function of static workspace switching is available in the Apsara Stack
environment only.
Dynamic workspace switching applies to a scenario where multiple sets of
workspaces exist and are switched frequently in the development phase.
The environment profile of the new environment must be written to the application
when dynamic environment switching is applied. Therefore, you need to request
file storage permissions for the application when using this approach.

Restricted by the mPaaS security signature verification mechanism, updating workspace
configuration information will modify the Security Guard signature verification picture
 yw_1222.jpg . Therefore, dynamic workspace switching has two restrictions.

Applicable only to the development phase: Dynamic workspace switching applies only to
the development phase. Delete the corresponding configuration before getting online (the
release package reports a RuntimeException exception).
Signature verification for network requests must be disabled in the mPaaS console.
Otherwise, requests will fail due to incorrect signature verification image information.

Add a dynamic workspace switching SDK
1. Add dependencies.

AAR access methods
Under the dependencies node in the build.gradle file of the main module, add the
following dependencies:

dependencies {
···
implementation 'com.mpaas.mocksettings:mocksettings-build:10.1.60a.1575@aar'
···
}

Portal&Bundle method
Under the dependencies node in the build.gradle file of the main module of the
portal project, add the following dependencies:

Access Android User Guide·Reference

> Document Version: 20231226 123

dependencies {
 ···
 bundle 'com.mpaas.mocksettings:mocksettings-build:1.0.0.200421111458@jar'
 manifest 'com.mpaas.mocksettings:mocksettings-
build:1.0.0.200421111458:AndroidManifest@xml'
 ····
}

2. Use SDK.
If using AAR access methods, rewrite the getPackageManager of Application, and replace
 PackageManager with MockSettingsPackageManager .

private MockSettingsPackageManager mockSettingsPackageManager;

@Override
public PackageManager getPackageManager() {
 if (mockSettingsPackageManager == null) {
 mockSettingsPackageManager = new MockSettingsPackageManager(this,
super.getPackageManager());
 }
 return mockSettingsPackageManager;
}

If using Portal&Bundle method, modify the application of AndroidManifest.xml
under the main module of Portal project.

<application
 android:name="com.alipay.mobile.quinox.MockSettingsLauncherApplication"
 ···
 >
 ···
</application>

3. Add the following permission and make sure it has been dynamically requested during
runtime.

<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />

4. Compile the debug package or turn on debug settings in AndroidManifest.xml .

<application
 android:debuggable="true"
 ···
 >
 ···
</application>

Dynamic switching

Access Android User Guide·Reference

> Document Version: 20231226 124

1. Scan the QR code to download the mPaaS setup App.

After installation, the icon of the mPaaS setup App is displayed as follows:

2. Place the config file downloaded from the mPaaS console in the SD card of the mobile
phone.

3. Add a workspace. Add the config file to the list by using the mPaaS setup App.
i. Open the mPaaS setup App.
ii. Click Add configuration file at the bottom of the Workspace list page.

a. Find the workspace configuration files to be added.

b. Add the two files (formal workspace and test workspace) to the workspace list.
4. Switch to another workspace.
5. Select a workspace in the preceding figure and click Switch to switch to the selected

workspace.
6. Then start the App corresponding to the workspace. If a test request can be properly sent,

switching to the target workspace succeeds.
If you switch to another workspace and restart the App corresponding to the earlier
workspace, the system reports a 3000 exception because the new workspace does not
contain the corresponding operationType. This is normal after you successfully switch to
another workspace.

7.3. DSA certificate encryption
tools

Access Android User Guide·Reference

> Document Version: 20231226 125

Because Android apps usually encrypt with the RSA method, the mPaaS console only supports
to get signatures for the app encrypted with the RSA method at the moment. If you need to
use the DSK method to encrypt an app, you should add signatures by the following steps.
See the following steps to add signatures:

1. Go to mPaaS console > Code management > Code configuration> Android tab to
download the configuration file.

Note
Do not upload the signed APK before downloading the configuration file.
The base64Code value, if any, must be cleared, as shown in the following figure.

2. Use the mPaaS plug-in to generate encrypted image. Go to mPaaS from the top navigation
bar of Android Studio > Basic tools > Generate encrypted image (Apsara Stack
profile) page, enter the relevant configuration information, and click OK to generate an
encrypted image.

appSecret is available from the mPaaS console under Code management > Code
configuration > Android tab, as shown in the following figure.

Access Android User Guide·Reference

> Document Version: 20231226 126

3. Perform a regular RPCcall to see if the call works correctly. For how to perform PRC calls,
see Call RPC.

Access Android User Guide·Reference

> Document Version: 20231226 127

Check the following FAQ list, then click the specific questions to view the answer.
No network connection when you compile
Program compilation failed
Access problem during compilation
When you access to Apsara Stack, after downloading configurations and accessing to
mPaaS, compilation is rejected and NullPointerException occurs
How to debug applications
Precautions for using MultiDex in the mPaaS Portal and Bundle projects
How to clear the Gradle cache
Upgrade to the latest Gradle plug-in
Camera cannot be turned on through the input file label in Huawei 10 System
How to depend on and use mPaaS in library?
How to fix 608 errors at runtime or native errors with libsgmain

No network connection when you compile
When you are compiling files, if there is no network, the compilation may fail. Follow the steps
to confirm that the network of compilation environment is connected.

1. Confirm that the Internet is connected.
2. Confirm that the network proxy is not connected, including browser proxy settings and

third-party network proxies.
3. Confirm that the IDE proxy is not configured.

4. In the gradle.properties file, confirm that the Gradle proxy is not configured. That is, the

8.FAQ
Access Android User Guide·FAQ

> Document Version: 20231226 128

4. In the gradle.properties file, confirm that the Gradle proxy is not configured. That is, the
 systemProp.http.proxyHost and the systemProp.http.proxyPort attribute is not
configured. If configured, you can delete the relevant attribute.

Program compilation failed
If program compilation failed, you can make troubleshooting and solutions by following the
steps.

1. According to the preceding steps, you can confirm that the network of compilation
environment is connected.

2. Check the Gradle execution log to confirm if the added dependency is valid.
3. Check if the dependent GAV parameters including group , artifact , and version are

configured correctly.

//Reference the debug pack group:artifact:version:raw@jar
bundle "com.app.xxxxx.xxxx:test-build:1.0-SNAPSHOT:raw@jar"
//Reference the release pack group:artifact:version@jar
bundle "com.app.xxxxx.xxxx:test-build:1.0-SNAPSHOT@jar"
manifest "com.app.xxxxx.xxxx:test-build:1.0-SNAPSHOT:AndroidManifest@xml"

4. In the command line tool built in the system, execute the following command to export the
Gradle execute logs:

// Before executing the command, confirm the undefined productflavor attribute. Other
wise, the command will fail to run.
// The following command will export the execution log to the log.txt file.
gradle buildDebug --info --debug -Plog=true > log.txt

5. Check the log file exported from the fourth step. In the latest log, you will see the following
record, which means the added dependency does not exist.

Access Android User Guide·FAQ

> Document Version: 20231226 129

Caused by: org.gradle.internal.resolve.ArtifactNotFoundException: Could not find nebu
lacore-build-AndroidManifest.xml (com.alipay.android.phone.wallet:nebulacore-build:1.
6.0.171211174825).
Searched in the following locations:
http://mvn.cloud.alipay.com/nexus/content/repositories/releases/com/alipay/android/phone/
wallet/nebulacore-build/1.6.0.171211174825/nebulacore-build-1.6.0.171211174825-Androi
dManifest.xml
 at
org.gradle.internal.resolve.result.DefaultBuildableArtifactResolveResult.notFound(Default
BuildableArtifactResolveResult.java:38)
 at
org.gradle.api.internal.artifacts.ivyservice.ivyresolve.CachingModuleComponentRepository$
LocateInCacheRepositoryAccess.resolveArtifactFromCache(CachingModuleComponentRepository.j
ava:260)

6. Visit the http link in this log and log on to check the Maven library. For example, the http
link can be the third line in the log listed in the preceding step.

Note
In the build.gradle file, you can check the account name and password that you
need to provide when you log on.

7. Execute the following command to refresh the gradle cache.

gradle clean --refresh-dependencies

8. If the Maven library has a relevant dependency, delete the Gradle cache under your
personal directory, then recompile.
The method of deleting the Gradle cache is as follows:

In the system such as macOS, Linux, and Unix, run the following commands:

cd ~
cd .gradle
cd caches
rm -rf modules-2

In the Windows system, by default, the path will be located to C:\Users\\
{Username}\\.gradle\caches . Delete the modules-2 folder.

Access problem during compilation
If there is an access problem during compilation, (you have waited for more than 20 minutes)
you can improve the compilation efficiency by following the steps.

1. According to the preceding steps, you can confirm that the network of compilation
environment is connected.

2. Confirm that the firewall is closed.
3. Confirm that the network configuration of the IntelliJ IDEA encoder is inactivated.
4. In the code, load Maven images in advance. See the following code example of Maven

images loaded by Alibaba Cloud.

Access Android User Guide·FAQ

> Document Version: 20231226 130

apply plugin: 'maven'
buildscript {
 repositories {
 mavenLocal()

// Load Maven images at first
 maven{ url 'http://maven.aliyun.com/nexus/content/groups/public/'}

 maven {
 credentials {
 username "Use the known user"
 password "Use the known password"
 }
 url "http://mvn.cloud.alipay.com/nexus/content/repositories/releases/"
 }
 }
 dependencies {
 classpath 'com.android.tools.build:gradle:2.1.3'
 classpath 'com.alipay.android:android-gradle-plugin:2.1.3.3.3'
 classpath 'com.neenbedankt.gradle.plugins:android-apt:1.8'
 }
}
allprojects {
 repositories {
 flatDir {
 dirs 'libs'
 }
 mavenLocal()
 maven {
 credentials {
 username "xxxxxxxxx"
 password "xxxxxxx"
 }
 url "http://mvn.cloud.alipay.com/nexus/content/repositories/releases/"
 }
 maven{ url 'http://maven.aliyun.com/nexus/content/groups/public/'}
 }
}

When you access to Apsara Stack, after downloading
configurations and accessing to mPaaS, compilation is rejected
and NullPointerException occurs

Access Android User Guide·FAQ

> Document Version: 20231226 131

In general, this is the problem of the configuration file, namely, the conf file. You need to
check the fields. Check if any of the thirteen fields are missing. Compare with the files
downloaded from the public cloud, and confirm if the field name is correct.

How to debug applications
During the development, you need to debug codes. This topic describes two debug methods.

Start the application through the debug mode
Run the application, then start debugging

Start the application through the debug mode
Use cases:
The initial code that you want to use when the debug application launched. For example,
initialize the code during application init.
Procedures:

1. Execute the command adb shell am start -W -S -D application pack name/The type name
of the first page launched by the application . For example, the pack name of the
mPaaS Demo is com.mpaas.demo , and the type name of the first page launched by the
application is com.alipay.mobile.quinox.LauncherActivity . You can use the command line
 adb shell am start -W -S -D com.mpaas.demo/com.alipay.mobile.quinox.LauncherActivity
to launch the application through the debug mode. See the following picture for the first
type name launched.

Access Android User Guide·FAQ

> Document Version: 20231226 132

2. After the command is executed, the following dialogue box will appear on the mobile
phone.

3. Set the breakpoint to the code line you want to debug. Then attach the breakpoint to the
process where the application is. See the following picture.

Run the application, then start debugging
Use cases:
Start debugging after you trigger an event. For example, only when you click a button or
redirect to a page, you need to debug.
Procedures:
After running the application, click the attached

button. Or after executing the preceding command, click the attached button, then start
debugging.

Precautions for using MultiDex in the mPaaS Portal and Bundle
projects
Portal and Bundle are not suggested to intervene in the MultiDex. Unless you are in the single
portal project, and need to use the multiDexEnabled true .If your Bundle is too big, you can
only continue by the method of splitting the bundle. Do not activate the multidex
support in the bundle.

How to clear the Gradle cache
Open the configuration page of the Gradle plug-in, then click Clean Cache button to delete
all the cache data of the Gradle plug-in.

Access Android User Guide·FAQ

> Document Version: 20231226 133

Upgrade to the latest Gradle plug-in

Note
The content of this section is only applicable for 10.1.68 baselines. For more information
about the baseline of this version, see Introduction to the baseline and Launch
instructions of 10.1.68 baselines.

The version of the Android Gradle Plugin provided by Google is 3.5.x at the moment.
mPaaS also provides the plug-in of 3.5.x version as the adapter, which supports the APIs of
Google Android Gradle Plugin 3.5.3 and Gradle 6.3.

Change in the access methods
1. You only need to import our plug-ins by adding the following dependency instead of

importing the official plug-in of Android Gradle Plugin. Because of the dependency
transmission, the plug-in will be imported automatically.

dependencies {
classpath 'com.alipay.android:android-gradle-plugin:3.5.18'
}

2. The version of Gradle Wrapper needs to be upgraded to 5.6 or later versions. Version 6.3 is
recommended to use.

Change in the usages
No need to use the apply plugin:'com.android.application .

If you are in the portal project, you only need to use the apply
plugin:'com.alipay.portal' .
If you are in the bundle project, you need to delete the apply
plugin:'com.android.application' and only need to use the apply
plugin:'com.alipay.bundle' .
If you are in the library project, you need to delete the apply
plugin:'com.alipay.library' and only need to use the apply
plugin:'com.android.library .

Access Android User Guide·FAQ

> Document Version: 20231226 134

If using the latest stable version of Android Studio 3.5 or later versions, you need to add
 android.buildOnlyTargetAbi=false in the gradle.properties.
Our wireless security components do not support V2 signatures at the moment. Thus, if you
need to use Android Studio debugging and install your APK, you need to disable V2
signatures. If you use the command line for creation, and your minSdkVersion is greater
than or equal to 24, you need to disable V2 signatures as well. See the following method of
disabling V2 signatures:

v2SigningEnabled false

Important
After clearing the cache, you need to check if the mini program and HTML5 work.

Camera cannot be turned on through the input file label in
Huawei 10 System
There are some differences between the implementations of Huawei 10 system URI and the
standard Android. Thus, you may meet problems such as failing to turn on the camera in
Huawei 10. You need to execute the following steps to solve this problem.

1. Upgrade baselines
If you are using 32 baselines, you need to upgrade the baseline to 10.1.32.18 or later.
If you are using 60 baselines, you need to upgrade the baseline to 10.1.60.9 or later.
If you are using 68 baselines, you need to upgrade the baseline to 10.1.68-beta.3 or later.

2. Configure FileProvider
You can reuse your current FileProvider or create a new FileProvider.

1. Create a new Java class to inherit the FileProvider.

import android.support.v4.content.FileProvider;
public class NebulaDemoFileProvider extends FileProvider {
}

2. Create a new nebula_fileprovider_path.xml in res/xml.

Access Android User Guide·FAQ

> Document Version: 20231226 135

<?xml version="1.0" encoding="utf-8"?>
<paths xmlns:android="http://schemas.android.com/apk/res/android">
 <external-path name="external" path="."/>
</paths>

3. Add configurations in AndroidManifest.

<provider
 android:name="com.mpaas.demo.nebula.NebulaDemoFileProvider"
 android:authorities="com.mpaas.demo.nebula.provider"
 android:exported="false"
 android:grantUriPermissions="true">
 <meta-data
 android:name="android.support.FILE_PROVIDER_PATHS"
 android:resource="@xml/nebula_fileprovider_path" />
</provider>

Note
Here the value of android:authorities, namely com.mpaas.demo.nebula.provider is an
mPaaS sample code. You need to configure by yourself based on your applications. And
the value cannot be configured as com.mpaas.demo.nebula.provider , which will have
conflicts with other mPaaS applications.

3. Implement the H5NebulaFileProvider
1. Create a new Java class, then implement the H5NebulaFileProvider and the getUriForFile

method. In this method, you can call the implemented FileProvider to generate URI.

Access Android User Guide·FAQ

> Document Version: 20231226 136

public class H5NebulaFileProviderImpl implements H5NebulaFileProvider {
 private static final String TAG = "H5FileProviderImpl";

 @Override
 public Uri getUriForFile(File file) {
 try {
 return getUriForFileImpl(file);
 } catch (Exception e) {
 H5Log.e(TAG, e);
 }
 return null;
 }

 private static Uri getUriForFileImpl(File file) {
 Uri fileUri = null;
 if (Build.VERSION.SDK_INT >= 24) {
 fileUri =
NebulaDemoFileProvider.getUriForFile(LauncherApplicationAgent.getInstance().getApplicatio
nContext(), "com.mpaas.demo.nebula.provider", file);
 } else {
 fileUri = Uri.fromFile(file);
 }
 return fileUri;
 }
}

2. Register the H5NebulaFileProvider .
After you complete the mPaaS initialization, register the H5NebulaFileProvider before you
start the off-line pack. Register once will take effect globally.

H5Utils.setProvider(H5NebulaFileProvider.class.getName(), new
H5NebulaFileProviderImpl());

How to depend on and use mPaaS in library?
While using mPaaS, a module needs to be reused sometimes. The reuse is implemented by
adding the module as a dependency. This section illustrates this method with an example of
reusing scan module.

Prerequisites
The project has been accessed to mPaaS in native AAR mode.

Procedure

Access Android User Guide·FAQ

> Document Version: 20231226 137

1. Create an Android Library type scan module in the project.

2. In the build.gradle file of the newly created scan module, add the following codes api
platform("com.mpaas.android:$mpaas_artifact:$mpaas_baseline") . The example is as
follows:

 dependencies {
 ……
 //This line is necessary when using mPaaS in the module.
 api platform("com.mpaas.android:$mpaas_artifact:$mpaas_baseline")

 ……
 }

3. Install scan component for scan module by Android Studio mPaaS plug-in. The directory is :
mPaaS > Native AAR mode > Configure/Update component > Start configuration.
After the installation, the scan component will automatically load.

Access Android User Guide·FAQ

> Document Version: 20231226 138

4. Configure App main project.

 plugins {
 id 'com.android.application'

 // baseline.config (baseline) must be added in the build.gradle file of app modu
le.
 id 'com.alipay.apollo.baseline.config'
 }

5. Call module.
Import scan module where it is used.

 dependencies {
 api platform("com.mpaas.android:$mpaas_artifact:$mpaas_baseline")

 api project(':scan')//scan module
 }

How to fix 608 errors at runtime or native errors with libsgmain
1. If an exception occurs during runtime, search for the keyword SecExcetpion in the

Android Studio runtime log, and find that there is a 608 error code or a native error of
libsgmain, you can follow the steps below to troubleshoot.

Access Android User Guide·FAQ

> Document Version: 20231226 139

i. Drag and drop the APK directly into Android Studio and check if the targetSdkVersion in
the Androidmenifest file is a version between 26-28.

Check if the res/drawable/yw_1222.jpg file exists.

Access Android User Guide·FAQ

> Document Version: 20231226 140

ii. Check if the res/drawable/yw_1222.jpg file exists.
Check the config file for Base64.
Check if the Gradle plugin baseline.update or baseline.config is applied.

iii. Check META-INF for three files, CERT.SF, MANIFEST.MF, and CERT.RSA.
a. Turn on v1SignEnabled in app/build.gradle .
b. Whether there is a pply plugin: 'com.alipay.apollo.optimize' in build.gradle in

the project root directory.

Access Android User Guide·FAQ

> Document Version: 20231226 141

After performing the above check steps and confirming that the result is correct, it means
that there is a problem with the signed APK package uploaded on the console. If the
signature is incorrect, the APK package needs to be re-uploaded.

Access Android User Guide·FAQ

> Document Version: 20231226 142

	1.Add mPaaS to your project
	1.1. Prerequisites
	1.2. Step 1 select appropriate integration method
	1.3. Step 2 create mPaaS application in the console
	1.4. Step 3 add configuration files to your project
	1.5. Step 4 mPaaS 10.2.3 Support Wireless Bodyguard&Blue Shield Switch (Optional)
	1.6. Step 5 select appropriate baseline
	1.7. Step 6 add components to your project

	2.Choose integration method
	2.1. Integration method introduction
	2.2. Native AAR integration method
	2.2.1. Manage component dependencies
	2.2.2. Check configurations of the build script
	2.2.3. Initialize mPaaS
	2.2.4. Add obfuscation rules
	2.2.5. Upgrade componentized or mPaaS Inside integration mode to Native AAR mode
	2.2.6. Remove specific mPaaS library
	2.2.7. Privacy permissions
	2.2.8. Use common components of mPaaS framework(optional)

	2.3. Componentized integration method (Portal&Bundle)
	2.3.1. About Portal & Bundle projects
	2.3.2. General steps
	2.3.3. Register common components
	2.3.4. Use Material Design
	2.3.5. Use non Android support 3rd resource library
	2.3.6. Load and customize the framework
	2.3.7. Manage gradle dependencies
	2.3.8. Obfuscate Android codes
	2.3.9. Attention for using MultiDex in mPaaS Portal&Bundle projects
	2.3.10. Data cleansing whitelist
	2.3.11. Remove privacy permissions
	2.3.12. Use privacy permission pop-ups (Portal&Bundle)

	3.Choose baseline
	3.1. Baseline introduction
	3.2. mPaaS 10.1.68 upgrade guide
	3.3. mPaaS 10.1.60 upgrade guide

	4.Solve dependency confilction
	4.1. Solve dependency conflicts
	4.2. Solve conflict with dependency on Amap location
	4.3. Solve conflict with dependency on Amap
	4.4. Solve conflict with dependency on security guard
	4.5. Solve conflict with dependency on utdid
	4.6. Solve conflict with dependency on Alipay SDK
	4.7. Solve conflict with dependency on wire/okio
	4.8. Solve conflict with dependency on fastjson
	4.9. Solve conflict with dependency on Android support
	4.10. Resolve libc++_shared.so conflicts
	4.11. Resolve libstlport_shared.so conflicts
	4.12. Solve conflict with libcrashsdk.so
	4.13. Solve conflict with libcrashsdk.so

	5.Developer's tools
	5.1. Android Studio mPaaS plugin
	5.1.1. About mPaaS plugin
	5.1.2. Install mPaaS plug-in
	5.1.3. Use mPaaS plug-in
	5.1.4. Update and uninstall mPaaS plug-in

	6.Adapt to Android
	6.1. Adapt to Android 12
	6.2. Adapt to Android 11
	6.3. Adapt to multi-CPU architecture
	6.4. Adapt mPaaS to targetSdkVersion 30
	6.5. Adapt to targetsdkversion 29
	6.6. Adapt to targetsdkversion 28

	7.Reference
	7.1. Environment configuration under componentized access mode
	7.2. Switch workspace
	7.3. DSA certificate encryption tools

	8.FAQ

